Small-Object Sensitive Segmentation Using Across Feature Map Attention

计算机科学 分割 人工智能 特征(语言学) 目标检测 模式识别(心理学) 对象(语法) 基于分割的对象分类 图像分割 尺度空间分割 计算机视觉 特征提取 哲学 语言学
作者
Shengtian Sang,Yuyin Zhou,Md Tauhidul Islam,Lei Xing
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (5): 6289-6306 被引量:21
标识
DOI:10.1109/tpami.2022.3211171
摘要

Semantic segmentation is an important step in understanding the scene for many practical applications such as autonomous driving. Although Deep Convolutional Neural Networks-based methods have significantly improved segmentation accuracy, small/thin objects remain challenging to segment due to convolutional and pooling operations that result in information loss, especially for small objects. This article presents a novel attention-based method called Across Feature Map Attention (AFMA) to address this challenge. It quantifies the inner-relationship between small and large objects belonging to the same category by utilizing the different feature levels of the original image. The AFMA could compensate for the loss of high-level feature information of small objects and improve the small/thin object segmentation. Our method can be used as an efficient plug-in for a wide range of existing architectures and produces much more interpretable feature representation than former studies. Extensive experiments on eight widely used segmentation methods and other existing small-object segmentation models on CamVid and Cityscapes demonstrate that our method substantially and consistently improves the segmentation of small/thin objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默毛衣完成签到,获得积分10
刚刚
刚刚
li发布了新的文献求助10
刚刚
刚刚
所所应助啦啦啦采纳,获得10
刚刚
sys完成签到,获得积分10
1秒前
cfz发布了新的文献求助10
1秒前
情怀应助李照慧采纳,获得10
1秒前
1秒前
聪慧千亦完成签到,获得积分10
2秒前
Jau完成签到,获得积分0
3秒前
3秒前
ttttsy完成签到 ,获得积分10
3秒前
田様应助苏苏苏采纳,获得10
3秒前
annoraz发布了新的文献求助10
4秒前
上官若男应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
隐形曼青应助songfeifeng采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
着急的寻真完成签到,获得积分20
5秒前
Hello应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
6秒前
BR应助科研通管家采纳,获得10
6秒前
6秒前
蛇虫鼠蚁应助科研通管家采纳,获得100
6秒前
dhts应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
一一发布了新的文献求助10
6秒前
科研小牛应助科研通管家采纳,获得10
6秒前
科研小牛应助科研通管家采纳,获得50
6秒前
爆米花应助科研通管家采纳,获得10
7秒前
Axel完成签到,获得积分10
7秒前
12发布了新的文献求助10
7秒前
YifanWang应助隐形采纳,获得10
8秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857