Understanding Hot Injection Quantum Dot Synthesis Outcomes Using Automated High-Throughput Experiment Platforms and Machine Learning

吞吐量 量子点 纳米技术 计算机科学 人工智能 材料科学 机器学习 操作系统 无线
作者
Rui Xu,Logan P. Keating,Ajit Vikram,Moonsub Shim,Paul J. A. Kenis
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (3): 1513-1525 被引量:6
标识
DOI:10.1021/acs.chemmater.3c02751
摘要

Machine learning (ML) has demonstrated potential toward accelerating synthesis planning for various material systems. However, ML has remained out of reach for many materials scientists due to the lack of systematic approaches or heuristics for developing ML workflows for material synthesis. In this work, we report an approach for selecting ML algorithms to train models for predicting nanomaterial synthesis outcomes. Specifically, we developed and used an automated batch microreactor platform to collect a large experimental data set for hot-injection synthesis outcomes of CdSe quantum dots. Thereafter, this data set was used to train models for predicting synthesis outcomes using various ML algorithms. The relative performances of these algorithms were compared for experimental data sets of different sizes and with different amounts of noise added. Neural-network-based models show the most accurate predictions for absorption and emission peak, while a cascade approach for predicting full width at half-maximum was shown to be superior to the direct approach. The SHapley Additive exPlanations (SHAP) approach was used to determine the relative importance of different synthesis parameters. Our analyses indicate that SHAP importance scores are highly dependent on feature selection and highlight the importance of developing inherently interpretable models for gaining insights from ML workflows for material synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
体贴的曼凝完成签到,获得积分10
1秒前
科研人完成签到 ,获得积分10
1秒前
1秒前
Lori完成签到,获得积分10
1秒前
顺利毕业完成签到,获得积分10
2秒前
大模型应助哎呀采纳,获得10
2秒前
2秒前
cdercder应助11223344采纳,获得10
3秒前
dt发布了新的文献求助10
4秒前
4秒前
4秒前
Qiuju完成签到,获得积分10
4秒前
科研澄澄完成签到,获得积分10
4秒前
肉肉完成签到 ,获得积分10
4秒前
DrKe完成签到,获得积分10
5秒前
sherry完成签到 ,获得积分10
5秒前
SONGYEZI完成签到,获得积分0
6秒前
6秒前
娅娃儿发布了新的文献求助10
6秒前
abc1122完成签到,获得积分10
6秒前
慕青应助chichenglin采纳,获得10
7秒前
7秒前
西大喜发布了新的文献求助10
8秒前
秋秋完成签到,获得积分10
9秒前
tian发布了新的文献求助10
9秒前
9秒前
王昱旻发布了新的文献求助10
9秒前
9秒前
10秒前
小居很哇塞完成签到,获得积分10
10秒前
潇洒映冬发布了新的文献求助10
10秒前
炙热怜寒完成签到,获得积分10
11秒前
科研小新在努力完成签到,获得积分20
11秒前
11秒前
Potato完成签到,获得积分10
11秒前
不做大哥好多年完成签到,获得积分10
12秒前
12秒前
慕青应助壮观的海豚采纳,获得10
12秒前
快乐棒棒糖完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788524
求助须知:如何正确求助?哪些是违规求助? 3333791
关于积分的说明 10264005
捐赠科研通 3049788
什么是DOI,文献DOI怎么找? 1673680
邀请新用户注册赠送积分活动 802157
科研通“疑难数据库(出版商)”最低求助积分说明 760526