亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI‐based prostate cancer classification using 3D efficient capsule network

前列腺癌 卷积神经网络 模式识别(心理学) 稳健性(进化) 医学影像学 磁共振成像 医学 主成分分析 支持向量机 癌症 放射科 人工智能 计算机科学 内科学 基因 生物化学 化学
作者
Yuheng Li,Jacob Wynne,Jing Wang,Justin Roper,Chih‐Wei Chang,Ashish Patel,Joseph W. Shelton,Tian Liu,Hui Mao,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (7): 4748-4758 被引量:4
标识
DOI:10.1002/mp.16975
摘要

Abstract Background Prostate cancer (PCa) is the most common cancer in men and the second leading cause of male cancer‐related death. Gleason score (GS) is the primary driver of PCa risk‐stratification and medical decision‐making, but can only be assessed at present via biopsy under anesthesia. Magnetic resonance imaging (MRI) is a promising non‐invasive method to further characterize PCa, providing additional anatomical and functional information. Meanwhile, the diagnostic power of MRI is limited by qualitative or, at best, semi‐quantitative interpretation criteria, leading to inter‐reader variability. Purposes Computer‐aided diagnosis employing quantitative MRI analysis has yielded promising results in non‐invasive prediction of GS. However, convolutional neural networks (CNNs) do not implicitly impose a frame of reference to the objects. Thus, CNNs do not encode the positional information properly, limiting method robustness against simple image variations such as flipping, scaling, or rotation. Capsule network (CapsNet) has been proposed to address this limitation and achieves promising results in this domain. In this study, we develop a 3D Efficient CapsNet to stratify GS‐derived PCa risk using T2‐weighted (T2W) MRI images. Methods In our method, we used 3D CNN modules to extract spatial features and primary capsule layers to encode vector features. We then propose to integrate fully‐connected capsule layers (FC Caps) to create a deeper hierarchy for PCa grading prediction. FC Caps comprises a secondary capsule layer which routes active primary capsules and a final capsule layer which outputs PCa risk. To account for data imbalance, we propose a novel dynamic weighted margin loss. We evaluate our method on a public PCa T2W MRI dataset from the Cancer Imaging Archive containing data from 976 patients. Results Two groups of experiments were performed: (1) we first identified high‐risk disease by classifying low + medium risk versus high risk; (2) we then stratified disease in one‐versus‐one fashion: low versus high risk, medium versus high risk, and low versus medium risk. Five‐fold cross validation was performed. Our model achieved an area under receiver operating characteristic curve (AUC) of 0.83 and 0.64 F1‐score for low versus high grade, 0.79 AUC and 0.75 F1‐score for low + medium versus high grade, 0.75 AUC and 0.69 F1‐score for medium versus high grade and 0.59 AUC and 0.57 F1‐score for low versus medium grade. Our method outperformed state‐of‐the‐art radiomics‐based classification and deep learning methods with the highest metrics for each experiment. Our divide‐and‐conquer strategy achieved weighted Cohen's Kappa score of 0.41, suggesting moderate agreement with ground truth PCa risks. Conclusions In this study, we proposed a novel 3D Efficient CapsNet for PCa risk stratification and demonstrated its feasibility. This developed tool provided a non‐invasive approach to assess PCa risk from T2W MR images, which might have potential to personalize the treatment of PCa and reduce the number of unnecessary biopsies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
丁三问发布了新的文献求助10
1分钟前
Arthur完成签到 ,获得积分10
1分钟前
丁三问完成签到,获得积分10
2分钟前
小蘑菇应助库里强采纳,获得10
2分钟前
2分钟前
silsotiscolor完成签到,获得积分10
3分钟前
4分钟前
Sunny完成签到,获得积分10
4分钟前
JamesPei应助无情中道采纳,获得10
4分钟前
5分钟前
无情中道发布了新的文献求助10
5分钟前
5分钟前
萝卜猪完成签到,获得积分10
5分钟前
5分钟前
花花公子完成签到,获得积分10
5分钟前
lyj完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
库里强发布了新的文献求助10
6分钟前
库里强完成签到,获得积分10
6分钟前
6分钟前
In_Timor应助爱笑的静洁采纳,获得10
7分钟前
tszjw168完成签到 ,获得积分10
7分钟前
蚂蚁踢大象完成签到 ,获得积分10
7分钟前
田様应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
慕青应助科研通管家采纳,获得10
7分钟前
星辰大海应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
领导范儿应助Rina采纳,获得10
8分钟前
9分钟前
Rina发布了新的文献求助10
9分钟前
9分钟前
星辰大海应助Rina采纳,获得10
9分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4118269
求助须知:如何正确求助?哪些是违规求助? 3656865
关于积分的说明 11577056
捐赠科研通 3359147
什么是DOI,文献DOI怎么找? 1845531
邀请新用户注册赠送积分活动 910816
科研通“疑难数据库(出版商)”最低求助积分说明 827070