Enhancing drug–food interaction prediction with precision representations through multilevel self-supervised learning

推论 计算机科学 编码器 机器学习 特征学习 人工智能 特征(语言学) 灵活性(工程) 领域(数学分析) 数据挖掘 数学分析 语言学 哲学 统计 数学 操作系统
作者
Jinhang Wei,Zhen Li,Linlin Zhuo,Xiangzheng Fu,Mingjing Wang,Keqin Li,Chengshui Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108104-108104 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.108104
摘要

Drug–food interactions (DFIs) crucially impact patient safety and drug efficacy by modifying absorption, distribution, metabolism, and excretion. The application of deep learning for predicting DFIs is promising, yet the development of computational models remains in its early stages. This is mainly due to the complexity of food compounds, challenging dataset developers in acquiring comprehensive ingredient data, often resulting in incomplete or vague food component descriptions. DFI-MS tackles this issue by employing an accurate feature representation method alongside a refined computational model. It innovatively achieves a more precise characterization of food features, a previously daunting task in DFI research. This is accomplished through modules designed for perturbation interactions, feature alignment and domain separation, and inference feedback. These modules extract essential information from features, using a perturbation module and a feature interaction encoder to establish robust representations. The feature alignment and domain separation modules are particularly effective in managing data with diverse frequencies and characteristics. DFI-MS stands out as the first in its field to combine data augmentation, feature alignment, domain separation, and contrastive learning. The flexibility of the inference feedback module allows its application in various downstream tasks. Demonstrating exceptional performance across multiple datasets, DFI-MS represents a significant advancement in food presentations technology. Our code and data are available at https://github.com/kkkayle/DFI-MS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
完美世界应助瑶瑶采纳,获得10
5秒前
沢雨完成签到 ,获得积分10
6秒前
Soen发布了新的文献求助10
7秒前
念一发布了新的文献求助10
10秒前
Snake完成签到,获得积分10
10秒前
zhenghua完成签到,获得积分10
12秒前
Hello应助如如要动采纳,获得10
16秒前
17秒前
Soen完成签到,获得积分10
19秒前
JamesPei应助lyn采纳,获得10
21秒前
完美世界应助石语芙采纳,获得10
23秒前
28秒前
31秒前
lyn发布了新的文献求助10
34秒前
伶俐的以晴完成签到,获得积分10
34秒前
XiYang完成签到 ,获得积分10
35秒前
37秒前
李爱国应助qiaoqiao采纳,获得10
38秒前
所所应助SCF采纳,获得10
39秒前
39秒前
可靠之玉完成签到,获得积分10
40秒前
独钓寒江雪完成签到 ,获得积分10
42秒前
不想看文献完成签到 ,获得积分10
42秒前
43秒前
石语芙发布了新的文献求助10
43秒前
水镜完成签到,获得积分10
44秒前
momo完成签到 ,获得积分10
45秒前
游艺完成签到 ,获得积分10
46秒前
Akim应助fanghao采纳,获得10
49秒前
万里发布了新的文献求助10
50秒前
嘿嘿应助wxwxwx采纳,获得10
57秒前
57秒前
zpphlw完成签到,获得积分10
59秒前
科研通AI2S应助自由寻琴采纳,获得10
1分钟前
1分钟前
惊才绝绝发布了新的文献求助10
1分钟前
clm完成签到 ,获得积分10
1分钟前
今后应助Iris采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Jailing People With Mental Illness While Awaiting Commitment Hearings 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5857826
求助须知:如何正确求助?哪些是违规求助? 6334364
关于积分的说明 15637309
捐赠科研通 4971973
什么是DOI,文献DOI怎么找? 2681829
邀请新用户注册赠送积分活动 1625679
关于科研通互助平台的介绍 1582916