SMOTE-LOF and Borderline-SMOTE Performance to Overcome Imbalanced Data and Outliers on Classification

过采样 离群值 计算机科学 人工智能 F1得分 支持向量机 朴素贝叶斯分类器 数据挖掘 机器学习 精确性和召回率 班级(哲学) 模式识别(心理学) 计算机网络 带宽(计算)
作者
Hanifatul Insan,Sri Suryani Prasetiyowati,Yuliant Sibaroni
标识
DOI:10.1109/icicyta60173.2023.10428902
摘要

Dealing with data imbalance and outliers is an important challenge in data classification. The aim of this study is to improve classification performance by reducing the effects of class imbalance and the presence of outliers in the dataset. SMOTE-LOF combines the SMOTE oversampling method with the Local Outlier Factor (LOF) to create a synthetic sample that also accounts for potential outliers. Meanwhile, Borderline-SMOTE identifies "borderline" samples in the minority class and then creates synthetic samples along the border between the majority and minority classes. In this study, experiments were conducted using classification algorithms such as Naïve Bayes, and Support Vector Machine on datasets that are imbalanced and contain outliers. The datasets used in this research include Pima Indians, Haberman, Glass, and Rainfall. This research scenario includes a comparison with previous research that has been done regarding SMOTE-LOF and Borderline-SMOTE on the Rainfall dataset. The results showed that on the three datasets, Borderline-SMOTE outperformed SMOTE-LOF on all three classifiers with an average accuracy of 4-6%, precision of 2-4%, recall of 5-10%, and F1 score of 5-6%. When the technique was applied to the Rainfall dataset, the results showed a 10-25% increase in accuracy. The outcomes consistently demonstrate that, when applied to the Pima Indians, Haberman, and Glass datasets, Borderline-SMOTE improves the performance of several classification algorithms. Better accuracy, precision, recall, and F1 score are evidence of this when compared to the application of the SMOTE-LOF technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
7秒前
实力不允许完成签到 ,获得积分10
8秒前
delta完成签到,获得积分10
9秒前
10秒前
12秒前
13秒前
立军发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
sophia完成签到 ,获得积分10
19秒前
19秒前
19秒前
FashionBoy应助快来吃甜瓜采纳,获得10
20秒前
hdisyd完成签到,获得积分10
20秒前
20秒前
田様应助Kun采纳,获得10
20秒前
jenningseastera应助Kun采纳,获得10
20秒前
21秒前
hdisyd发布了新的文献求助10
23秒前
yu发布了新的文献求助10
25秒前
25秒前
科研通AI5应助chendi20082009采纳,获得10
26秒前
28秒前
深情安青应助chen采纳,获得10
29秒前
30秒前
fduqyy发布了新的文献求助10
34秒前
yu完成签到,获得积分10
38秒前
38秒前
39秒前
41秒前
悦耳的海燕完成签到 ,获得积分10
42秒前
42秒前
44秒前
落后紫夏完成签到,获得积分10
45秒前
46秒前
chen发布了新的文献求助10
46秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224182
捐赠科研通 3040851
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649