SMOTE-LOF and Borderline-SMOTE Performance to Overcome Imbalanced Data and Outliers on Classification

过采样 离群值 计算机科学 人工智能 F1得分 支持向量机 朴素贝叶斯分类器 数据挖掘 机器学习 精确性和召回率 班级(哲学) 模式识别(心理学) 计算机网络 带宽(计算)
作者
Hanifatul Insan,Sri Suryani Prasetiyowati,Yuliant Sibaroni
标识
DOI:10.1109/icicyta60173.2023.10428902
摘要

Dealing with data imbalance and outliers is an important challenge in data classification. The aim of this study is to improve classification performance by reducing the effects of class imbalance and the presence of outliers in the dataset. SMOTE-LOF combines the SMOTE oversampling method with the Local Outlier Factor (LOF) to create a synthetic sample that also accounts for potential outliers. Meanwhile, Borderline-SMOTE identifies "borderline" samples in the minority class and then creates synthetic samples along the border between the majority and minority classes. In this study, experiments were conducted using classification algorithms such as Naïve Bayes, and Support Vector Machine on datasets that are imbalanced and contain outliers. The datasets used in this research include Pima Indians, Haberman, Glass, and Rainfall. This research scenario includes a comparison with previous research that has been done regarding SMOTE-LOF and Borderline-SMOTE on the Rainfall dataset. The results showed that on the three datasets, Borderline-SMOTE outperformed SMOTE-LOF on all three classifiers with an average accuracy of 4-6%, precision of 2-4%, recall of 5-10%, and F1 score of 5-6%. When the technique was applied to the Rainfall dataset, the results showed a 10-25% increase in accuracy. The outcomes consistently demonstrate that, when applied to the Pima Indians, Haberman, and Glass datasets, Borderline-SMOTE improves the performance of several classification algorithms. Better accuracy, precision, recall, and F1 score are evidence of this when compared to the application of the SMOTE-LOF technique.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6.1应助徐新雨采纳,获得10
1秒前
Zhi应助徐新雨采纳,获得10
1秒前
锦七完成签到,获得积分10
4秒前
自由夕阳完成签到,获得积分10
4秒前
hmy完成签到,获得积分10
5秒前
6秒前
机灵如霜完成签到,获得积分10
6秒前
科研通AI6.1应助wyz采纳,获得10
8秒前
9秒前
9秒前
燕燕于飞发布了新的文献求助10
10秒前
锦七发布了新的文献求助10
10秒前
10秒前
哈哈完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
看到就去签到完成签到,获得积分10
11秒前
13秒前
徐新雨完成签到,获得积分10
13秒前
13秒前
15秒前
zj发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
Skuld发布了新的文献求助10
16秒前
Sherry99发布了新的文献求助10
16秒前
王富贵发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
18秒前
Ava应助CC采纳,获得10
18秒前
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
咸鱼王发布了新的文献求助30
18秒前
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
工学基礎離散数学とその応用[第2版] 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5807600
求助须知:如何正确求助?哪些是违规求助? 5864170
关于积分的说明 15521689
捐赠科研通 4932262
什么是DOI,文献DOI怎么找? 2655828
邀请新用户注册赠送积分活动 1602377
关于科研通互助平台的介绍 1557419