Convolutional Neural Network-Driven Impedance Flow Cytometry for Accurate Bacterial Differentiation

杆菌 卷积神经网络 人工智能 线性判别分析 模式识别(心理学) 生物系统 化学 计算机科学 细菌 生物 遗传学
作者
Shuaihua Zhang,Ziyu Han,H. Jerry Qi,Siyuan Liu,Bohua Liu,Chongling Sun,Zhe Feng,Meiqing Sun,Xuexin Duan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (11): 4419-4429 被引量:5
标识
DOI:10.1021/acs.analchem.3c04421
摘要

Impedance flow cytometry (IFC) has been demonstrated to be an efficient tool for label-free bacterial investigation to obtain the electrical properties in real time. However, the accurate differentiation of different species of bacteria by IFC technology remains a challenge owing to the insignificant differences in data. Here, we developed a convolutional neural networks (ConvNet) deep learning approach to enhance the accuracy and efficiency of the IFC toward distinguishing various species of bacteria. First, more than 1 million sets of impedance data (comprising 42 characteristic features for each set) of various groups of bacteria were trained by the ConvNet model. To improve the efficiency for data analysis, the Spearman correlation coefficient and the mean decrease accuracy of the random forest algorithm were introduced to eliminate feature interaction and extract the opacity of impedance related to the bacterial wall and membrane structure as the predominant features in bacterial differentiation. Moreover, the 25 optimized features were selected with differentiation accuracies of >96% for three groups of bacteria (bacilli, cocci, and vibrio) and >95% for two species of bacilli (Escherichia coli and Salmonella enteritidis), compared to machine learning algorithms (complex tree, linear discriminant, and K-nearest neighbor algorithms) with a maximum accuracy of 76.4%. Furthermore, bacterial differentiation was achieved on spiked samples of different species with different mixing ratios. The proposed ConvNet deep learning-assisted data analysis method of IFC exhibits advantages in analyzing a huge number of data sets with capacity for extracting predominant features within multicomponent information and will bring about progress and advances in the fields of both biosensing and data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天只做一件事应助PPL采纳,获得10
2秒前
清爽老九应助Wizard采纳,获得10
2秒前
5秒前
小犁牛完成签到 ,获得积分10
8秒前
阡陌完成签到 ,获得积分10
8秒前
9秒前
9秒前
汉堡包应助niu采纳,获得10
10秒前
VIVIAN完成签到,获得积分20
10秒前
11秒前
明明完成签到,获得积分10
11秒前
VIVIAN发布了新的文献求助10
16秒前
内向映天完成签到 ,获得积分10
16秒前
17秒前
木耳完成签到,获得积分10
18秒前
认真荣轩发布了新的文献求助10
18秒前
大方泥猴桃完成签到,获得积分10
18秒前
大模型应助潘磊采纳,获得10
19秒前
19秒前
传奇3应助彩色的松思采纳,获得30
20秒前
wangtinglk发布了新的文献求助10
21秒前
21秒前
木耳发布了新的文献求助10
22秒前
Ava应助科研通管家采纳,获得30
24秒前
24秒前
残幻应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
残幻应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
SunnyZjw发布了新的文献求助10
25秒前
25秒前
he发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669