Covalent Triazine Framework-Derived Membranes: Engineered Sol–Gel Construction and Gas Separation Application

聚合 单体 杂原子 三嗪 气体分离 共价键 材料科学 共轭体系 化学工程 纳米技术 聚合物 高分子化学 化学 有机化学 组合化学 工程类 生物化学 戒指(化学)
作者
Liqi Qiu,Zhenzhen Yang,Sheng Dai
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (12): 1020-1032
标识
DOI:10.1021/accountsmr.3c00054
摘要

ConspectusCovalent triazine frameworks (CTFs) represent one of the most extensively studied organic networks characterized by graphitic π-conjugated structures linked by aza-fused rings, possessing unique features such as compositions of light elements (e.g., C, H, and N), porous architectures abundant heteroatom involvement, and extensively conjugated structures. In addition, the textural and chemical structures of CTFs could be engineered via synthesis control to accommodate diverse applications. CTF materials with notable characteristics, including plentiful (ultra-)micropores, high surface areas, and the presence of CO2-philic functional groups involving nitrogen (N), oxygen (O), and fluorine (F), hold great promise as potential candidates for anthropogenic CO2 capture and sequestration (CCS) applications. However, the conventional high-temperature involved ionothermal procedures and the solution-based coupling pathway only afforded CTF materials in powder form, which is difficult to be processed toward membrane formation. Successful fabrication of CTF-derived membranes will rely on the development of alternative polymerization approaches as well as structural engineering to afford membrane architectures with controllable porosity distribution and active interaction sites with CO2 benefiting the CO2 separation procedure.6In this Account, a demonstration of the latest progress in the development of CTF-derived membranes was provided. The CTF membranes were mainly synthesized via a superacid (e.g., CF3SO3H)-promoted sol–gel approach involving the polymerization of aromatic nitrile monomers. The formation of the triazine unit through the trimerization of cyano groups served as the cross-linkers, resulting in the creation of π-conjugated networks alongside the arenes present in the starting materials. The aromatic nitrile monomers with rigid and sterically hindered structures were required to afford CTF membranes with nanoporous architectures. The acidity of the superacid and reactivity of the aromatic monomers played critical roles in the polymerization efficiency. The monomer diversity and synthesis tunability endowed the introduction of CO2-philic functionalities (e.g., pyrazole and fluorine) within the CTF skeletons, and integration of ionic moieties was achieved by adopting FSO3H with stronger acidity as the catalyst and aromatic nitrile monomers with pyrazine structures. To ensure the successful construction of fluorinated CTF membranes, it is important to avoid any fluorines on the ortho-position of the cyano groups on the benzene ring. Through control over the monomers and reaction conditions, flexible, transparent, and insoluble CTF membranes could be fabricated. The sol–gel method could be further expanded to membrane fabrication through acetyl-to-benzene transformation through synthesis control. The mild oxidation-exfoliation-filtration method was also demonstrated to fabricate substrate-supported CTF membranes. The as-afforded membranes are well characterized to determine the structural features and provide information to study the structure-performance relationship. The application of CTF membranes in CO2 separation was summarized, focusing on the approaches being developed to enhance CO2 uptake and separation performance. In addition to utilizing the pristine CTF membranes for gas separation, functionalized carbon molecular sieve membranes could be obtained from the pyrolysis of thermally stable CTF membrane precursors toward efficient CO2 separation, benefiting from the abundant ultramicropores being created during the pyrolysis/decomposition procedure and involvement of CO2-philic functionalities such as fluorine and nitrogen-containing moieties. Based on these achievements, unsolved issues in CTF membrane-related fabrication and applications, including the potential solution approaches, have been proposed to advance the application of CTF membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyu完成签到 ,获得积分10
1秒前
活泼的诗兰完成签到,获得积分10
3秒前
Feng5945完成签到 ,获得积分10
4秒前
4秒前
通通通发布了新的文献求助10
5秒前
6秒前
能干的新筠完成签到,获得积分10
10秒前
感谢有你完成签到 ,获得积分10
14秒前
今夜有雨完成签到 ,获得积分10
18秒前
稳重的邑完成签到,获得积分20
19秒前
科研通AI5应助11采纳,获得10
19秒前
Doctor_jie完成签到 ,获得积分10
22秒前
童年的回忆klwqqt完成签到,获得积分10
23秒前
小王同学完成签到,获得积分10
25秒前
等待纸鹤完成签到,获得积分10
26秒前
科研通AI2S应助liuhuo采纳,获得10
26秒前
愉快的花卷完成签到 ,获得积分10
26秒前
27秒前
科研通AI5应助舒心的半仙采纳,获得10
28秒前
天凉王破完成签到 ,获得积分10
29秒前
lyric完成签到,获得积分10
29秒前
天天快乐应助猪猪hero采纳,获得10
30秒前
xzy998应助通通通采纳,获得10
31秒前
稳重的邑发布了新的文献求助10
32秒前
benj完成签到,获得积分10
33秒前
33秒前
小星星发布了新的文献求助10
33秒前
tyughi完成签到,获得积分10
34秒前
35秒前
36秒前
36秒前
hume发布了新的文献求助10
36秒前
彩色亿先完成签到 ,获得积分10
37秒前
guochang完成签到,获得积分10
39秒前
十一苗完成签到 ,获得积分10
40秒前
豆浆烩面发布了新的文献求助10
41秒前
甜美紫翠发布了新的文献求助10
42秒前
xr完成签到 ,获得积分10
42秒前
hume完成签到,获得积分10
44秒前
香蕉觅云应助小星星采纳,获得10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304