A nomogram incorporating treatment data for predicting overall survival in gastroenteropancreatic neuroendocrine tumors: a population-based cohort study

医学 列线图 比例危险模型 入射(几何) 流行病学 肿瘤科 内科学 阶段(地层学) 监测、流行病学和最终结果 神经内分泌肿瘤 单变量 癌症登记处 多元分析 危险系数 多元统计 统计 光学 物理 生物 置信区间 古生物学 数学
作者
Zeng‐Hong Wu,Guochen Shang,Kun Zhang,Weijun Wang,Mengke Fan,Rong Lin
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:110 (4): 2178-2186 被引量:1
标识
DOI:10.1097/js9.0000000000001080
摘要

Background: Over the last few decades, the annual global incidence of gastroenteropancreatic neuroendocrine tumours (GEP-NETs) has steadily increased. Because of the complex and inconsistent treatment of GEP-NETs, the prognosis of patients with GEP-NETs is still difficult to assess. The study aimed to construct and validate the nomograms included treatment data for prediction overall survival (OS) in GEP-NETs patients. Methods: GEP-NETs patients determined from the Surveillance, Epidemiology, and End Results (SEER)-13 registry database (1992–2018) and with additional treatment data from the SEER-18 registry database (1975–2016). In order to select independent prognostic factors that contribute significantly to patient survival and can be included in the nomogram, multivariate Cox regression analysis was performed using the minimum value of Akaike information criterion (AIC) and we analyzed the relationship of variables with OS by calculating hazard ratios (HRs) and 95% CIs. In addition, we also comprehensively compared the nomogram using to predict OS with the current 7th American Joint Committee on Cancer (AJCC) staging system. Results: From 2004 to 2015, a total of 42 662 patients at diagnosis years with GEP-NETs were determined from the SEER database. The results indicated that the increasing incidence of GEP-NETs per year and the highest incidence is in patients aged 50–54. After removing cases lacking adequate clinicopathologic characteristics, the remaining eligible patients ( n =7564) were randomly divided into training (3782 patients) and testing sets (3782 patients). In the univariate analysis, sex, age, race, tumour location, SEER historic stage, pathology type, TNM, stage, surgery, radiation, chemotherapy, and CS tumour size were found to be significantly related to OS. Ultimately, the key factors for predicting OS were determined, involving sex, age, race, tumour location, SEER historic stage, M, N, grade, surgery, radiation, and chemotherapy. For internal validation, the C-index of the nomogram used to estimate OS in the training set was 0.816 (0.804–0.828). For external validation, the concordance index (C-index) of the nomogram used to predict OS was 0.822 (0.812–0.832). In the training and testing sets, our nomogram produced minimum AIC values and C-index of OS compared with AJCC stage. Decision curve analysis (DCA) indicated that the nomogram was better than the AJCC staging system because more clinical net benefits were obtained within a wider threshold probability range. Conclusion: A nomogram combined treatment data may be better discrimination in predicting overall survival than AJCC staging system. The authors highly recommend to use their nomogram to evaluate individual risks based on different clinical features of GEP-NETs, which can improve the diagnosis and treatment outcomes of GEP-NETs patients and improve their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胜天半子完成签到 ,获得积分10
4秒前
4秒前
不过尔尔完成签到 ,获得积分10
8秒前
LiangRen完成签到 ,获得积分10
8秒前
闻屿完成签到,获得积分10
8秒前
cdercder应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
笑林完成签到 ,获得积分10
17秒前
CLTTTt完成签到,获得积分10
26秒前
27秒前
TTTHANKS完成签到 ,获得积分10
31秒前
手握灵珠常奋笔完成签到,获得积分10
33秒前
余味应助滕皓轩采纳,获得10
37秒前
虚幻元风完成签到 ,获得积分10
39秒前
我爱学习完成签到,获得积分10
44秒前
优雅的雁凡完成签到,获得积分10
45秒前
53秒前
eternal_dreams完成签到 ,获得积分10
55秒前
zw完成签到,获得积分10
56秒前
56秒前
笑点低的孤丹完成签到 ,获得积分10
59秒前
hover发布了新的文献求助10
1分钟前
体贴的叛逆者完成签到,获得积分10
1分钟前
yingw驳回了Ava应助
1分钟前
jason完成签到 ,获得积分10
1分钟前
MYMELODY完成签到,获得积分10
1分钟前
彭彭蓬完成签到 ,获得积分20
1分钟前
科研通AI5应助盈盈采纳,获得30
1分钟前
兴奋小丸子完成签到,获得积分10
1分钟前
依依完成签到,获得积分10
1分钟前
米博士完成签到,获得积分10
1分钟前
梓唯忧完成签到 ,获得积分10
1分钟前
czzlancer完成签到,获得积分10
1分钟前
伶俐的语雪完成签到,获得积分10
1分钟前
材1完成签到 ,获得积分10
1分钟前
1分钟前
momo发布了新的文献求助10
1分钟前
Lucas应助momo采纳,获得10
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
青牛完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798555
求助须知:如何正确求助?哪些是违规求助? 3344090
关于积分的说明 10318508
捐赠科研通 3060649
什么是DOI,文献DOI怎么找? 1679753
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353