A nomogram incorporating treatment data for predicting overall survival in gastroenteropancreatic neuroendocrine tumors: a population-based cohort study

医学 列线图 比例危险模型 入射(几何) 流行病学 肿瘤科 内科学 阶段(地层学) 监测、流行病学和最终结果 神经内分泌肿瘤 单变量 癌症登记处 多元分析 危险系数 多元统计 统计 光学 物理 生物 置信区间 古生物学 数学
作者
Zeng‐Hong Wu,Guochen Shang,Kun Zhang,Weijun Wang,Mengke Fan,Rong Lin
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:110 (4): 2178-2186 被引量:9
标识
DOI:10.1097/js9.0000000000001080
摘要

Background: Over the last few decades, the annual global incidence of gastroenteropancreatic neuroendocrine tumours (GEP-NETs) has steadily increased. Because of the complex and inconsistent treatment of GEP-NETs, the prognosis of patients with GEP-NETs is still difficult to assess. The study aimed to construct and validate the nomograms included treatment data for prediction overall survival (OS) in GEP-NETs patients. Methods: GEP-NETs patients determined from the Surveillance, Epidemiology, and End Results (SEER)-13 registry database (1992–2018) and with additional treatment data from the SEER-18 registry database (1975–2016). In order to select independent prognostic factors that contribute significantly to patient survival and can be included in the nomogram, multivariate Cox regression analysis was performed using the minimum value of Akaike information criterion (AIC) and we analyzed the relationship of variables with OS by calculating hazard ratios (HRs) and 95% CIs. In addition, we also comprehensively compared the nomogram using to predict OS with the current 7th American Joint Committee on Cancer (AJCC) staging system. Results: From 2004 to 2015, a total of 42 662 patients at diagnosis years with GEP-NETs were determined from the SEER database. The results indicated that the increasing incidence of GEP-NETs per year and the highest incidence is in patients aged 50–54. After removing cases lacking adequate clinicopathologic characteristics, the remaining eligible patients ( n =7564) were randomly divided into training (3782 patients) and testing sets (3782 patients). In the univariate analysis, sex, age, race, tumour location, SEER historic stage, pathology type, TNM, stage, surgery, radiation, chemotherapy, and CS tumour size were found to be significantly related to OS. Ultimately, the key factors for predicting OS were determined, involving sex, age, race, tumour location, SEER historic stage, M, N, grade, surgery, radiation, and chemotherapy. For internal validation, the C-index of the nomogram used to estimate OS in the training set was 0.816 (0.804–0.828). For external validation, the concordance index (C-index) of the nomogram used to predict OS was 0.822 (0.812–0.832). In the training and testing sets, our nomogram produced minimum AIC values and C-index of OS compared with AJCC stage. Decision curve analysis (DCA) indicated that the nomogram was better than the AJCC staging system because more clinical net benefits were obtained within a wider threshold probability range. Conclusion: A nomogram combined treatment data may be better discrimination in predicting overall survival than AJCC staging system. The authors highly recommend to use their nomogram to evaluate individual risks based on different clinical features of GEP-NETs, which can improve the diagnosis and treatment outcomes of GEP-NETs patients and improve their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
蒋若风完成签到,获得积分10
3秒前
凌晨五点的完成签到,获得积分10
4秒前
6秒前
孙朱珠发布了新的文献求助10
7秒前
VDC发布了新的文献求助10
7秒前
ommphey完成签到 ,获得积分10
8秒前
田甜玉完成签到,获得积分10
11秒前
11秒前
冷静的振家完成签到,获得积分10
13秒前
Hello应助qiqi采纳,获得10
13秒前
秃头的彬彬完成签到,获得积分10
13秒前
小李完成签到 ,获得积分10
14秒前
HPP123完成签到 ,获得积分10
15秒前
夏紫儿完成签到 ,获得积分10
19秒前
jingyuemingqiu完成签到 ,获得积分10
19秒前
雷雷完成签到,获得积分10
21秒前
科研通AI5应助zhn0607采纳,获得50
24秒前
大吴克发布了新的文献求助10
29秒前
田甜玉发布了新的文献求助10
30秒前
30秒前
奋斗的妙海完成签到 ,获得积分0
31秒前
CCL完成签到,获得积分10
32秒前
仁爱的帽子完成签到,获得积分10
33秒前
典雅朝雪完成签到 ,获得积分10
34秒前
谦让汝燕完成签到,获得积分10
35秒前
zzhui完成签到,获得积分10
36秒前
小石榴爸爸完成签到 ,获得积分10
36秒前
勤恳易谙完成签到,获得积分10
38秒前
科目三应助诺奇采纳,获得10
38秒前
平安完成签到,获得积分10
45秒前
洁净的闭月完成签到,获得积分10
46秒前
hhh2018687完成签到,获得积分10
47秒前
小小王完成签到 ,获得积分10
48秒前
cloud完成签到,获得积分10
49秒前
Stting完成签到 ,获得积分10
50秒前
21GolDiamond完成签到,获得积分10
52秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
53秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4445256
求助须知:如何正确求助?哪些是违规求助? 3915544
关于积分的说明 12155972
捐赠科研通 3564535
什么是DOI,文献DOI怎么找? 1957097
邀请新用户注册赠送积分活动 996715
科研通“疑难数据库(出版商)”最低求助积分说明 891979