A nomogram incorporating treatment data for predicting overall survival in gastroenteropancreatic neuroendocrine tumors: a population-based cohort study

医学 列线图 比例危险模型 入射(几何) 流行病学 肿瘤科 内科学 阶段(地层学) 监测、流行病学和最终结果 神经内分泌肿瘤 单变量 癌症登记处 多元分析 危险系数 多元统计 统计 光学 物理 生物 置信区间 古生物学 数学
作者
Zeng‐Hong Wu,Guochen Shang,Kun Zhang,Weijun Wang,Mengke Fan,Rong Lin
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (4): 2178-2186 被引量:11
标识
DOI:10.1097/js9.0000000000001080
摘要

Background: Over the last few decades, the annual global incidence of gastroenteropancreatic neuroendocrine tumours (GEP-NETs) has steadily increased. Because of the complex and inconsistent treatment of GEP-NETs, the prognosis of patients with GEP-NETs is still difficult to assess. The study aimed to construct and validate the nomograms included treatment data for prediction overall survival (OS) in GEP-NETs patients. Methods: GEP-NETs patients determined from the Surveillance, Epidemiology, and End Results (SEER)-13 registry database (1992–2018) and with additional treatment data from the SEER-18 registry database (1975–2016). In order to select independent prognostic factors that contribute significantly to patient survival and can be included in the nomogram, multivariate Cox regression analysis was performed using the minimum value of Akaike information criterion (AIC) and we analyzed the relationship of variables with OS by calculating hazard ratios (HRs) and 95% CIs. In addition, we also comprehensively compared the nomogram using to predict OS with the current 7th American Joint Committee on Cancer (AJCC) staging system. Results: From 2004 to 2015, a total of 42 662 patients at diagnosis years with GEP-NETs were determined from the SEER database. The results indicated that the increasing incidence of GEP-NETs per year and the highest incidence is in patients aged 50–54. After removing cases lacking adequate clinicopathologic characteristics, the remaining eligible patients ( n =7564) were randomly divided into training (3782 patients) and testing sets (3782 patients). In the univariate analysis, sex, age, race, tumour location, SEER historic stage, pathology type, TNM, stage, surgery, radiation, chemotherapy, and CS tumour size were found to be significantly related to OS. Ultimately, the key factors for predicting OS were determined, involving sex, age, race, tumour location, SEER historic stage, M, N, grade, surgery, radiation, and chemotherapy. For internal validation, the C-index of the nomogram used to estimate OS in the training set was 0.816 (0.804–0.828). For external validation, the concordance index (C-index) of the nomogram used to predict OS was 0.822 (0.812–0.832). In the training and testing sets, our nomogram produced minimum AIC values and C-index of OS compared with AJCC stage. Decision curve analysis (DCA) indicated that the nomogram was better than the AJCC staging system because more clinical net benefits were obtained within a wider threshold probability range. Conclusion: A nomogram combined treatment data may be better discrimination in predicting overall survival than AJCC staging system. The authors highly recommend to use their nomogram to evaluate individual risks based on different clinical features of GEP-NETs, which can improve the diagnosis and treatment outcomes of GEP-NETs patients and improve their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
邱乐乐发布了新的文献求助10
2秒前
as1710549269完成签到 ,获得积分10
3秒前
3秒前
4秒前
aaa发布了新的文献求助10
4秒前
小怪发布了新的文献求助30
4秒前
贾医生发布了新的文献求助30
4秒前
dean完成签到,获得积分10
4秒前
Li发布了新的文献求助10
6秒前
BESTZJ发布了新的文献求助30
6秒前
shirley发布了新的文献求助10
6秒前
张俊扬发布了新的文献求助10
8秒前
飞翔的完成签到,获得积分10
8秒前
清_发布了新的文献求助10
9秒前
10秒前
善学以致用应助残剑月采纳,获得10
10秒前
肥膘肘子完成签到,获得积分10
10秒前
嗯啊完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
yyy完成签到,获得积分20
13秒前
13秒前
shirley完成签到,获得积分10
13秒前
默存完成签到,获得积分10
14秒前
Ty发布了新的文献求助10
15秒前
jingyu发布了新的文献求助10
16秒前
陌上之心发布了新的文献求助10
16秒前
八轩发布了新的文献求助10
18秒前
猪猪hero应助夏楚原采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
BowieHuang应助科研通管家采纳,获得10
19秒前
BowieHuang应助科研通管家采纳,获得10
19秒前
代111应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613356
求助须知:如何正确求助?哪些是违规求助? 4698496
关于积分的说明 14898143
捐赠科研通 4735949
什么是DOI,文献DOI怎么找? 2547003
邀请新用户注册赠送积分活动 1510990
关于科研通互助平台的介绍 1473546