Adaptive learning for soil classification in laser-induced breakdown spectroscopy streaming

激光诱导击穿光谱 光谱学 材料科学 计算机科学 激光器 环境科学 物理 光学 量子力学
作者
Yingchao Huang,Shubho Mohajan,N. F. Beier,Ying Wan,Sadee Lamothe,Abdul Bais,Miles Dyck,Frank A. Hegmann,Amina Hussein
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (7): 3714-3727 被引量:3
标识
DOI:10.1109/tai.2024.3375260
摘要

The application of machine learning (ML) has accelerated the development of laser-induced breakdown spectroscopy (LIBS) in soil analysis. However, analyzing remote LIBS data in real time using ML is challenging due to several factors. Firstly, building robust ML models requires extensive calibration datasets, which are not always possible with limited LIBS experimental data. Secondly, matrix effects can worsen LIBS performance, and changes in sample physical properties or the apparatus can impact the distribution and intensity of emission lines. These issues may lead to concept drift in real-time/online data streaming, causing the relationship between the input and the target spectra to change over time. Consequently, an ML model designed for one LIBS system may not apply to another. To conquer these challenges, we propose a framework based on transfer learning to use limited experimental data and adapt to the emission line variation in the LIBS streaming. A model is first pre-trained using a large labelled source dataset and then fine-tuned with new experimental measurements to classify soil samples. LIBS measurements are conducted with variations in sample properties and experimental parameters to simulate differences in remote LIBS sensors. The collected spectra are fed into the model by chunks, and data evolution is dynamically learned by self-balanced learning to self-adapt to the domain shift. The proposed framework is found effective in improving classification accuracy during data streaming by implementing transfer learning and supporting adaptation compared to the literature. The code of the proposed method is available in the GitHub at https://github.com/kelci2017/LIBS_streaming .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
栾栾完成签到,获得积分10
1秒前
暴躁的凌柏完成签到 ,获得积分10
1秒前
li完成签到,获得积分20
2秒前
2秒前
沉沉发布了新的文献求助10
3秒前
AA发布了新的文献求助30
3秒前
HAL应助期待未来的自己采纳,获得10
5秒前
自信的昊焱完成签到,获得积分10
6秒前
shelemi发布了新的文献求助10
6秒前
汉堡包应助yeeee采纳,获得10
6秒前
祖金杰发布了新的文献求助10
6秒前
7秒前
大个应助123采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
赘婿应助蓝莓芝士采纳,获得10
8秒前
8秒前
suzy-123发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
不配.应助烂漫百招采纳,获得20
11秒前
11秒前
12秒前
decade完成签到,获得积分10
12秒前
12秒前
沉着冷静韩道友完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
GG发布了新的文献求助10
14秒前
Lucas应助liuy03采纳,获得10
15秒前
yiren完成签到,获得积分10
15秒前
16秒前
fan发布了新的文献求助10
16秒前
Shirley发布了新的文献求助10
17秒前
17秒前
祝星发布了新的文献求助10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232724
求助须知:如何正确求助?哪些是违规求助? 3766059
关于积分的说明 11832964
捐赠科研通 3424638
什么是DOI,文献DOI怎么找? 1879415
邀请新用户注册赠送积分活动 932281
科研通“疑难数据库(出版商)”最低求助积分说明 839512