Online Parallel Multi-Task Relationship Learning via Alternating Direction Method of Multipliers

任务(项目管理) 计算机科学 并行计算 算术 数学 经济 管理
作者
Ruiyu Li,Peilin Zhao,Guangxia Li,Zhiqiang Xu,Xuewei Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.06135
摘要

Online multi-task learning (OMTL) enhances streaming data processing by leveraging the inherent relations among multiple tasks. It can be described as an optimization problem in which a single loss function is defined for multiple tasks. Existing gradient-descent-based methods for this problem might suffer from gradient vanishing and poor conditioning issues. Furthermore, the centralized setting hinders their application to online parallel optimization, which is vital to big data analytics. Therefore, this study proposes a novel OMTL framework based on the alternating direction multiplier method (ADMM), a recent breakthrough in optimization suitable for the distributed computing environment because of its decomposable and easy-to-implement nature. The relations among multiple tasks are modeled dynamically to fit the constant changes in an online scenario. In a classical distributed computing architecture with a central server, the proposed OMTL algorithm with the ADMM optimizer outperforms SGD-based approaches in terms of accuracy and efficiency. Because the central server might become a bottleneck when the data scale grows, we further tailor the algorithm to a decentralized setting, so that each node can work by only exchanging information with local neighbors. Experimental results on a synthetic and several real-world datasets demonstrate the efficiency of our methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助哈喽采纳,获得10
2秒前
汀宁完成签到,获得积分20
2秒前
水门发布了新的文献求助10
3秒前
27完成签到,获得积分20
3秒前
4秒前
大个应助NO0809采纳,获得10
4秒前
5秒前
shuqi完成签到 ,获得积分10
5秒前
5秒前
6秒前
ln发布了新的文献求助10
7秒前
hakunamatata完成签到 ,获得积分10
8秒前
beiest发布了新的文献求助200
8秒前
古藤完成签到 ,获得积分10
9秒前
9秒前
tao完成签到 ,获得积分10
12秒前
13秒前
14秒前
安在哉完成签到,获得积分10
16秒前
17秒前
我是老大应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得30
18秒前
丘比特应助科研通管家采纳,获得10
19秒前
泽ze应助科研通管家采纳,获得20
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
19秒前
温柔的耳机完成签到,获得积分10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
Racheal发布了新的文献求助10
20秒前
爆米花应助快乐的凡霜采纳,获得10
20秒前
辛勤如南完成签到,获得积分10
20秒前
22秒前
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818939
求助须知:如何正确求助?哪些是违规求助? 3362015
关于积分的说明 10414983
捐赠科研通 3080315
什么是DOI,文献DOI怎么找? 1694152
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768337