Enhancing bowel sound recognition with self-attention and self-supervised pre-training

计算机科学 卷积神经网络 人工智能 听诊 语音识别 模式识别(心理学) 机器学习 医学 放射科
作者
Yansuo Yu,Mingwu Zhang,Zhen-Nian Xie,Qiang Liu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (12): e0311503-e0311503
标识
DOI:10.1371/journal.pone.0311503
摘要

Bowel sounds, a reflection of the gastrointestinal tract’s peristalsis, are essential for diagnosing and monitoring gastrointestinal conditions. However, the absence of an effective, non-invasive method for assessing digestion through auscultation has resulted in a reliance on time-consuming and laborious manual analysis by clinicians. This study introduces an innovative deep learning-based method designed to automate and enhance the recognition of bowel sounds. Our approach integrates the Branchformer architecture, which leverages the power of self-attention and convolutional gating for robust feature extraction, with a self-supervised pre-training strategy. Specifically, the Branchformer model employs parallel processing of self-attention and convolutional gated Multi-layer Perceptron branches to capture both global and local dependencies in audio signals, thereby enabling effective characterization of complex bowel sound patterns. Furthermore, a self-supervised pre-training strategy is employed, leveraging a large corpus of unlabeled audio data to learn general sound wave representations, followed by fine-tuning on a limited set of bowel sound data to optimize the model’s recognition performance for specific tasks. Experimental results on public bowel sound datasets demonstrate the superior recognition performance of the proposed method compared to existing baseline models, particularly under data-limited conditions, thereby confirming the effectiveness of the self-supervised pre-training strategy. This work provides an efficient and automated solution for clinical bowel sound monitoring, facilitating early diagnosis and treatment of gastrointestinal disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hmf1995发布了新的文献求助30
1秒前
3秒前
淡然花生完成签到,获得积分10
4秒前
4秒前
科研通AI6.2应助小桔青山采纳,获得10
4秒前
桦奕兮完成签到 ,获得积分10
5秒前
自信项链发布了新的文献求助30
13秒前
科研通AI6.2应助bckl888采纳,获得10
15秒前
李琛完成签到,获得积分10
16秒前
糖糖糖发布了新的文献求助10
18秒前
cnulee发布了新的文献求助10
20秒前
舒服的猫咪完成签到,获得积分10
20秒前
蓝天应助阿米尔盼盼采纳,获得10
20秒前
21秒前
脑洞疼应助凉小远采纳,获得10
22秒前
23秒前
lll完成签到 ,获得积分10
25秒前
求助人员发布了新的文献求助10
25秒前
所所应助nono采纳,获得10
26秒前
慕青应助轻松的乌龟采纳,获得30
26秒前
wonder发布了新的文献求助10
28秒前
Criminology34应助sifLiu采纳,获得10
29秒前
Nyxia完成签到,获得积分10
31秒前
MYC007完成签到 ,获得积分10
31秒前
32秒前
bckl888发布了新的文献求助10
32秒前
32秒前
magiczhu完成签到,获得积分10
33秒前
牛拉犁完成签到 ,获得积分10
34秒前
35秒前
Ava应助闪闪的静槐采纳,获得10
36秒前
37秒前
onw发布了新的文献求助30
37秒前
whuhustwit发布了新的文献求助10
37秒前
传奇3应助herdwind采纳,获得10
38秒前
39秒前
nono发布了新的文献求助10
39秒前
科研通AI6.1应助多喝岩浆采纳,获得10
40秒前
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5873631
求助须知:如何正确求助?哪些是违规求助? 6500368
关于积分的说明 15672273
捐赠科研通 4991245
什么是DOI,文献DOI怎么找? 2690494
邀请新用户注册赠送积分活动 1633050
关于科研通互助平台的介绍 1590854