清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Meta-Learning based Semi-supervised Change Detection in Remote Sensing Images

遥感 变更检测 计算机科学 人工智能 计算机视觉 地质学
作者
Yi Tang,Liyi Zhang,Wuxia Zhang,Zuo Jiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3527483
摘要

Semi-supervised change detection methods with consistency regularization, which overcome the lack of labeled samples by using unlabeled samples and enforcing consistent predictions under weak perturbations. However, current consistency regularization methods lack randomness in their perturbation settings and treat all samples uniformly, limiting the model's ability to leverage sample diversity to improve generalization. In contrast, meta-learning methods shift focus from individual samples to learning patterns across similar tasks, thereby enhancing information efficiency and model generalization. Inspired by these principles, we propose a Meta-Learning-based Semi-supervised Change Detection (MLSCD) method for remote sensing images, which aims to explore and leverage meta-learning methods to enhance the generalization capabilities of consistency regularization-based semi-supervised change detection. First, we set the degree of weak perturbation and the combination of different types of perturbations as random parameters to generate diverse and randomized weak perturbations. Second, we redefine consistency regularization-based semi-supervised change detection from a meta-learning perspective, which learns patterns from diverse perturbation tasks to improve sample utilization efficiency, thereby enhancing the model's generalization capability. Third, we balance accuracy and efficiency by using AdamW for cross-task updates in the outer loop and SGD for single-task optimization in the inner loop, which experimental results demonstrate is an ideal method for applying meta-learning to remote sensing change detection. Finally, the superiority of the proposed method is validated on two datasets. The extensive experimental results demonstrate the superior performance of the proposed method compared to state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fabius0351完成签到 ,获得积分10
19秒前
23秒前
曈梦完成签到,获得积分10
28秒前
淡淡的飞荷完成签到 ,获得积分10
33秒前
xl_c完成签到 ,获得积分10
57秒前
1分钟前
amkeymay发布了新的文献求助10
1分钟前
赘婿应助白华苍松采纳,获得10
1分钟前
nav完成签到 ,获得积分10
1分钟前
daixan89完成签到 ,获得积分10
1分钟前
1分钟前
WebCasa完成签到,获得积分10
1分钟前
噜噜晓完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助50
2分钟前
hhh完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
小石榴的爸爸完成签到 ,获得积分10
3分钟前
逍遥子完成签到,获得积分10
3分钟前
小石榴爸爸完成签到 ,获得积分10
3分钟前
3分钟前
huzi2009完成签到 ,获得积分10
3分钟前
蚂蚁完成签到,获得积分10
3分钟前
DZS完成签到 ,获得积分10
4分钟前
所所应助天黑不打烊采纳,获得10
4分钟前
ninini完成签到 ,获得积分10
4分钟前
老小孩发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
老小孩完成签到,获得积分10
5分钟前
简让完成签到 ,获得积分10
5分钟前
5分钟前
liuzhudi发布了新的文献求助10
5分钟前
chcmy完成签到 ,获得积分0
5分钟前
duke完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
工学基礎離散数学とその応用[第2版] 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5809273
求助须知:如何正确求助?哪些是违规求助? 5880303
关于积分的说明 15524911
捐赠科研通 4933595
什么是DOI,文献DOI怎么找? 2656835
邀请新用户注册赠送积分活动 1603056
关于科研通互助平台的介绍 1558335