亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-Learning based Semi-supervised Change Detection in Remote Sensing Images

遥感 变更检测 计算机科学 人工智能 计算机视觉 地质学
作者
Yi Tang,Liyi Zhang,Wuxia Zhang,Zuo Jiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3527483
摘要

Semi-supervised change detection methods with consistency regularization, which overcome the lack of labeled samples by using unlabeled samples and enforcing consistent predictions under weak perturbations. However, current consistency regularization methods lack randomness in their perturbation settings and treat all samples uniformly, limiting the model's ability to leverage sample diversity to improve generalization. In contrast, meta-learning methods shift focus from individual samples to learning patterns across similar tasks, thereby enhancing information efficiency and model generalization. Inspired by these principles, we propose a Meta-Learning-based Semi-supervised Change Detection (MLSCD) method for remote sensing images, which aims to explore and leverage meta-learning methods to enhance the generalization capabilities of consistency regularization-based semi-supervised change detection. First, we set the degree of weak perturbation and the combination of different types of perturbations as random parameters to generate diverse and randomized weak perturbations. Second, we redefine consistency regularization-based semi-supervised change detection from a meta-learning perspective, which learns patterns from diverse perturbation tasks to improve sample utilization efficiency, thereby enhancing the model's generalization capability. Third, we balance accuracy and efficiency by using AdamW for cross-task updates in the outer loop and SGD for single-task optimization in the inner loop, which experimental results demonstrate is an ideal method for applying meta-learning to remote sensing change detection. Finally, the superiority of the proposed method is validated on two datasets. The extensive experimental results demonstrate the superior performance of the proposed method compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
17秒前
123456789发布了新的文献求助10
22秒前
32秒前
hjp发布了新的文献求助10
36秒前
37秒前
归尘应助科研通管家采纳,获得100
40秒前
41秒前
hjp完成签到,获得积分10
42秒前
54秒前
1分钟前
ANNY完成签到,获得积分10
1分钟前
吃个橘子发布了新的文献求助10
1分钟前
隐形曼青应助Yingkun_Xu采纳,获得10
1分钟前
吃个橘子完成签到,获得积分20
1分钟前
charih完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
赘婿应助清修采纳,获得10
1分钟前
Annabelame完成签到,获得积分10
1分钟前
wewewew发布了新的文献求助10
1分钟前
1分钟前
2分钟前
顺心的安珊完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Hillson完成签到,获得积分10
2分钟前
清修发布了新的文献求助10
2分钟前
2分钟前
高速旋转老沁完成签到 ,获得积分10
2分钟前
2分钟前
机灵白桃发布了新的文献求助10
2分钟前
星辰大海应助乌冬面采纳,获得10
2分钟前
科研通AI5应助zzzwhy采纳,获得10
2分钟前
充电宝应助机灵白桃采纳,获得10
3分钟前
乌冬面完成签到,获得积分10
3分钟前
科研通AI5应助zzhang采纳,获得10
3分钟前
玖月完成签到 ,获得积分10
3分钟前
李爱国应助JonyQ采纳,获得10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244161
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483