FSD V2: Improving Fully Sparse 3D Object Detection with Virtual Voxels

人工智能 计算机科学 体素 计算机视觉 目标检测 模式识别(心理学) 对象(语法)
作者
Lue Fan,Wang Feng,Naiyan Wang,Zhaoxiang Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:47 (2): 1279-1292 被引量:8
标识
DOI:10.1109/tpami.2024.3502456
摘要

LiDAR-based fully sparse architecture has gained increasing attention. FSDv1 stands out as a representative work, achieving impressive efficacy and efficiency, albeit with intricate structures and handcrafted designs. In this paper, we present FSDv2, an evolution that aims to simplify the previous FSDv1 and eliminate the ad-hoc heuristics in its handcrafted instance-level representation, thus promoting better universality. To this end, we introduce virtual voxels, taking over the clustering-based instance segmentation in FSDv1. Virtual voxels not only address the notorious issue of the Center Feature Missing in fully sparse detectors but also endow the framework with a more elegant and streamlined approach. Besides, we develop a suite of components to complement the virtual voxel mechanism, including a virtual voxel encoder, a virtual voxel mixer, and a virtual voxel assignment strategy. We conduct experiments on three large-scale datasets: Waymo Open Dataset, Argoverse 2 dataset, and nuScenes dataset. Our results showcase state-of-the-art performance on all three datasets, highlighting the superiority of FSDv2 in long-range scenarios and its universality in achieving competitive performance across diverse scenarios. Moreover, we provide comprehensive experimental analysis to understand the workings of FSDv2. To facilitate further research, we have open-sourced the full code at https://github.com/tusen-ai/SST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanyimeng完成签到,获得积分10
刚刚
吻痕完成签到,获得积分10
刚刚
小熊完成签到,获得积分20
刚刚
1秒前
天天快乐应助时尚俊驰采纳,获得10
2秒前
疯狂的寻绿完成签到,获得积分10
2秒前
Lyubb完成签到,获得积分10
2秒前
3秒前
深情海秋完成签到,获得积分10
3秒前
爆米花应助科研喵采纳,获得10
3秒前
3秒前
Ava应助Earven采纳,获得10
3秒前
4秒前
4秒前
ff完成签到,获得积分10
4秒前
5秒前
楠楠DAYTOY完成签到,获得积分10
5秒前
5秒前
6秒前
煎饼狗子发布了新的文献求助10
6秒前
Drew11完成签到,获得积分10
7秒前
7秒前
青羽发布了新的文献求助20
7秒前
7秒前
欣喜眼神发布了新的文献求助10
7秒前
冷静帅哥完成签到,获得积分10
8秒前
北北北应助清秀的远望采纳,获得10
8秒前
young完成签到,获得积分10
9秒前
科研通AI2S应助Qyyy采纳,获得10
9秒前
9秒前
8464368完成签到,获得积分10
10秒前
changjiaren发布了新的文献求助10
10秒前
科研通AI5应助尊敬的芷卉采纳,获得30
10秒前
11秒前
科研通AI5应助尊敬的芷卉采纳,获得10
11秒前
科研通AI5应助尊敬的芷卉采纳,获得10
11秒前
充电宝应助尊敬的芷卉采纳,获得10
11秒前
lgq12697应助尊敬的芷卉采纳,获得10
11秒前
科研通AI6应助尊敬的芷卉采纳,获得10
11秒前
科研通AI6应助尊敬的芷卉采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4473356
求助须知:如何正确求助?哪些是违规求助? 3932350
关于积分的说明 12200085
捐赠科研通 3586974
什么是DOI,文献DOI怎么找? 1971774
邀请新用户注册赠送积分活动 1009704
科研通“疑难数据库(出版商)”最低求助积分说明 903366