Fault diagnosis of rolling bearing based on parameter-adaptive re-constraint VMD optimized by SABO

断层(地质) 方位(导航) 约束(计算机辅助设计) 计算机科学 机械工程 地质学 人工智能 工程类 地震学
作者
J.M. Guo,Tianyao Zhang,Kunlin Xue,Jiehui Liu,jie Wu,Yadong Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad962d
摘要

Abstract Variational mode decomposition (VMD) is widely used in fault-bearing vibration-signal processing. Nonetheless, VMD remains a challenging task because of the difficulty in finding the optimal combination of parameters and excessive fault information in the residual term. The optimal parameter combination plays a balancing role in the optimization process, controlling the error between the reconstructed signal and the original signal while suppressing interference between modes. To address these defects, a parameter-adaptive re-constrained VMD method based on a subtraction average-based optimizer (SABO) is proposed. In this method, exponential functions are first used to build filters to implement a re-constrained VMD. Focusing on the fault information and minimizing it in the residuals. Then, SABO was employed to find the best parameter combination for subsequent signal processing. Finally, the signal is decomposed, and envelope spectral analysis is performed on each component to extract the fault frequencies, thereby identifying the specific fault type. Numerical simulations and real experimental data were used to demonstrate the effectiveness of the proposed method. In addition, the generalization ability of the proposed method was tested using 40 sets of sample data, and the average accuracy of this method reached 97.5%. Compared with other commonly used signal decomposition methods, the superiority of this method in rolling bearing fault feature extraction is proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语大王完成签到,获得积分10
刚刚
1秒前
zxz完成签到,获得积分10
1秒前
1秒前
朱文韬发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
zxr发布了新的文献求助10
6秒前
君君发布了新的文献求助30
9秒前
和谐的傥发布了新的文献求助10
9秒前
9秒前
Julien完成签到,获得积分10
13秒前
14秒前
今后应助zzn采纳,获得10
16秒前
16秒前
16秒前
冷静映安完成签到,获得积分10
18秒前
yolanda完成签到,获得积分20
18秒前
19秒前
20秒前
yolanda发布了新的文献求助10
20秒前
jinyu发布了新的文献求助10
21秒前
请问发布了新的文献求助10
22秒前
Ava应助和谐的傥采纳,获得10
22秒前
哈哈王子完成签到,获得积分10
23秒前
朱文韬发布了新的文献求助10
23秒前
WMYY发布了新的文献求助10
24秒前
慕青应助weiwei采纳,获得10
25秒前
25秒前
狗妹那塞完成签到,获得积分10
25秒前
酷波er应助jinyu采纳,获得30
28秒前
28秒前
CY发布了新的文献求助30
32秒前
kelexh发布了新的文献求助10
32秒前
33秒前
33秒前
36秒前
weiwei发布了新的文献求助10
37秒前
皖医梁朝伟完成签到 ,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777922
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214842
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315