Enhancing Radiographic Diagnosis: CycleGAN-Based Methods for Reducing Cast Shadow Artifacts in Wrist Radiographs

射线照相术 医学诊断 医学 特征(语言学) 手腕 放射科 计算机科学 影子(心理学) 人工智能 心理学 心理治疗师 哲学 语言学
作者
Stanley A. Norris,Daniel Carrion,Michael Ditchfield,Manuel Gubser,Jarrel Seah,Mohamed Khaldoun Badawy
标识
DOI:10.1007/s10278-024-01385-3
摘要

We extend existing techniques by using generative adversarial network (GAN) models to reduce the appearance of cast shadows in radiographs across various age groups. We retrospectively collected 11,500 adult and paediatric wrist radiographs, evenly divided between those with and without casts. The test subset consisted of 750 radiographs with cast and 750 without cast. We extended the results from a previous study that employed CycleGAN by enhancing the model using a perceptual loss function and a self-attention layer. The CycleGAN model which incorporates a self-attention layer and perceptual loss function delivered a similar quantitative performance as the original model. This model was applied to images from 20 cases where the original reports recommended CT scanning or repeat radiographs without the cast, which were then evaluated by radiologists for qualitative assessment. The results demonstrated that the generated images could improve radiologists' diagnostic confidence, in some cases leading to more decisive reports. Where available, the reports from follow-up imaging were compared with those produced by radiologists reading AI-generated images. Every report, except two, provided identical diagnoses as those associated with follow-up imaging. The ability of radiologists to perform robust reporting with downsampled AI-enhanced images is clinically meaningful and warrants further investigation. Additionally, radiologists were unable to distinguish AI-enhanced from unenhanced images. These findings suggest the cast suppression technique could be integrated as a tool to augment clinical workflows, with the potential benefits of reducing patient doses, improving operational efficiencies, reducing delays in diagnoses, and reducing the number of patient visits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助LiuSD采纳,获得10
刚刚
天明完成签到,获得积分10
1秒前
xxy发布了新的文献求助10
1秒前
水星逃逸完成签到,获得积分10
4秒前
淡淡从阳完成签到,获得积分10
5秒前
h41692011完成签到 ,获得积分10
6秒前
子车茗应助飘逸楷瑞采纳,获得20
6秒前
Jasper应助OIIII采纳,获得10
7秒前
PakhoPHD完成签到 ,获得积分10
8秒前
称心太阳完成签到 ,获得积分10
9秒前
betty完成签到,获得积分10
9秒前
Adam完成签到 ,获得积分10
10秒前
王琼完成签到 ,获得积分10
11秒前
研友_8Qg1dn发布了新的文献求助10
12秒前
子车茗应助ranj采纳,获得30
13秒前
搜集达人应助xxy采纳,获得10
15秒前
很傻的狗完成签到,获得积分10
16秒前
热情平凡发布了新的文献求助10
17秒前
杨寅完成签到,获得积分10
18秒前
周钰波完成签到,获得积分10
20秒前
caicai发布了新的文献求助10
23秒前
科研通AI5应助DDDiamond采纳,获得10
25秒前
眨眼完成签到,获得积分10
26秒前
26秒前
念神珠恋玥完成签到,获得积分10
27秒前
缥缈纲应助lyr采纳,获得10
28秒前
29秒前
共享精神应助不期而遇采纳,获得10
30秒前
小长夜完成签到,获得积分10
30秒前
yerong应助水刃木采纳,获得10
31秒前
白夜完成签到 ,获得积分10
31秒前
凌时爱吃零食完成签到,获得积分10
31秒前
33秒前
勤奋修勾发布了新的文献求助10
33秒前
yanshapo发布了新的文献求助10
34秒前
37秒前
Zzz完成签到,获得积分10
37秒前
充电宝应助caicai采纳,获得10
37秒前
DDDiamond发布了新的文献求助10
38秒前
yy完成签到,获得积分10
38秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801574
求助须知:如何正确求助?哪些是违规求助? 3347346
关于积分的说明 10333136
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681885
邀请新用户注册赠送积分活动 807767
科研通“疑难数据库(出版商)”最低求助积分说明 763867