Progress and Strategies of MOFs in Catalyzing Conversion Processes in Lithium‐Sulfur Batteries

锂(药物) 硫黄 化学 纳米技术 材料科学 有机化学 医学 内分泌学
作者
Yaru Wang,Xingyou Rao,Zhengdao Pan,Yan Zhao,Yalong Zheng,Yichao Luo,Xinyu Jiang,Yutong Wu,Xiang Liu,Zhoulu Wang,Yi Zhang
出处
期刊:Batteries & supercaps [Wiley]
标识
DOI:10.1002/batt.202400484
摘要

Abstract Lithium‐sulfur (Li−S) batteries have attracted considerable attention due to their advantages, such as high specific capacity, high energy density, environmental friendliness, and low cost. However, the severe capacity fading caused by shuttle effect of polysulfide needs to be addressed before the practical application of Li−S batteries. Crystalline porous materials including MOFs have generated great interest in energy storage fields especially batteries, because the ordered porous frameworks can offer a fast‐ionic transportation. Nevertheless, the intrinsic low conductivity of MOFs limits their rapid development in lithium‐sulfur batteries. This review mainly discusses the latest research progress on MOF main materials in Li−S batteries. The working principle of Li−S batteries and the classical “adsorption‐catalysis‐conversion” strategy are briefly introduced. Specifically, three modification methods (non‐metal atom doping, single‐atom, and dual‐atom doping modifications) applied in MOF‐based materials are analyzed and summarized, along with their respective mechanisms and advantages and disadvantages. Ligand doping is an effective strategy that can regulate the structure and properties of MOFs, thereby enhancing their catalytic activity and adsorption capacity towards polysulfides. Through ligand doping, key parameters such as the pore size, surface charge, and active site density of MOFs can be controlled, thereby influencing the adsorption and conversion of polysulfides on MOFs surfaces. Furthermore, crucial insights for the rational design of advanced MOF‐based materials for lithium‐sulfur batteries and the exploration of the main challenges and future directions for their application were also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵明完成签到,获得积分10
刚刚
Hohowinnie完成签到,获得积分10
1秒前
飘逸的小鸽子完成签到 ,获得积分10
3秒前
5秒前
利好完成签到 ,获得积分10
6秒前
研友_闾丘枫完成签到 ,获得积分10
6秒前
Li完成签到,获得积分10
8秒前
花生仁发布了新的文献求助10
8秒前
8秒前
9秒前
斯文麦片完成签到 ,获得积分10
10秒前
龙骑士25发布了新的文献求助10
11秒前
栗子完成签到,获得积分10
11秒前
认真果汁发布了新的文献求助10
14秒前
CQ完成签到 ,获得积分10
15秒前
ma化疼没木完成签到,获得积分10
16秒前
19秒前
超帅曼柔完成签到,获得积分10
20秒前
22秒前
动漫大师发布了新的文献求助10
25秒前
25秒前
chuanzhi完成签到,获得积分10
26秒前
27秒前
29秒前
31秒前
聪明静柏完成签到 ,获得积分10
31秒前
31秒前
独特大米发布了新的文献求助10
31秒前
35秒前
棒棒睡不着(科研版)完成签到,获得积分10
35秒前
林蓉发布了新的文献求助10
35秒前
孙佳琦发布了新的文献求助10
36秒前
Micheal完成签到,获得积分10
36秒前
新海天发布了新的文献求助60
37秒前
37秒前
善学以致用应助Pan采纳,获得10
39秒前
科研通AI5应助独特大米采纳,获得10
39秒前
小鹿完成签到 ,获得积分10
41秒前
43秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783164
求助须知:如何正确求助?哪些是违规求助? 3328499
关于积分的说明 10236658
捐赠科研通 3043569
什么是DOI,文献DOI怎么找? 1670599
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119