Progress in the experimental and computational methods of work function evaluation of materials: A review

工作职能 开尔文探针力显微镜 工作(物理) 密度泛函理论 功能(生物学) 计算模型 计算机科学 材料科学 凝胶 纳米技术 机械工程 化学 计算化学 人工智能 金属 冶金 工程类 原子力显微镜 生物 进化生物学 图层(电子)
作者
Olukunle C. Olawole,D. K. De,O.F. Olawole,Ravita Lamba,Emily Joel,Sunday Olayinka Oyedepo,A.A. Ajayi,O.A. Adegbite,Fabian I. Ezema,Samira Naghdi,T.D. Olawole,Oluwafunke Obembe,K.O. Oguniran
出处
期刊:Heliyon [Elsevier]
卷期号:8 (10): e11030-e11030 被引量:7
标识
DOI:10.1016/j.heliyon.2022.e11030
摘要

The work function, which determines the behaviour of electrons in a material, remains a crucial factor in surface science to understand the corrosion rates and interfacial engineering in making photosensitive and electron-emitting devices. The present article reviews the various experimental methods and theoretical models employed for work function measurement along with their merits and demerits are discussed. Reports from the existing methods of work function measurements that Kelvin probe force microscopy (KPFM) is the most suitable measurement technique over other experimental methods. It has been observed from the literature that the computational methods that are capable of predicting the work functions of different metals have a higher computational cost. However, the stabilized Jellium model (SJM) has the potential to predict the work function of transition metals, simple metals, rare-earth metals and inner transition metals. The metallic plasma model (MPM) can predict polycrystalline metals, while the density functional theory (DFT) is a versatile tool for predicting the lowest and highest work function of the material with higher computational cost. The high-throughput density functional theory and machine learning (HTDFTML) tools are suitable for predicting the lowest and highest work functions of extreme material surfaces with cheaper computational cost. The combined Bayesian machine learning and first principle (CBMLFP) is suitable for predicting the lowest and highest work functions of the materials with a very low computational cost. Conclusively, HTDFTML and CBMLFP should be used to explore the work functions and surface energy in complex materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子发布了新的文献求助10
刚刚
刚刚
辞昔发布了新的文献求助30
2秒前
3秒前
ableyy发布了新的文献求助10
3秒前
LCFXR发布了新的文献求助10
3秒前
尘默发布了新的文献求助10
7秒前
8秒前
爱吃大米完成签到,获得积分10
11秒前
科研通AI6.2应助小H采纳,获得10
12秒前
爱吃大米发布了新的文献求助10
13秒前
18969431868完成签到,获得积分10
15秒前
17秒前
19秒前
辞昔完成签到,获得积分10
22秒前
23秒前
23秒前
慈祥的梦露完成签到,获得积分10
24秒前
dongge发布了新的文献求助10
25秒前
尘曦完成签到,获得积分10
25秒前
迅速的易巧完成签到 ,获得积分10
30秒前
31秒前
32秒前
maxiaohan发布了新的文献求助10
33秒前
香蕉觅云应助小白不白采纳,获得10
33秒前
机灵的以筠完成签到 ,获得积分10
33秒前
Ava应助crazyatai采纳,获得50
36秒前
充电宝应助尘默采纳,获得10
36秒前
Hello应助guoduan采纳,获得10
39秒前
科研通AI6.1应助xin采纳,获得10
40秒前
小H发布了新的文献求助10
40秒前
丘比特应助玩命的博采纳,获得10
41秒前
Cathy17sl完成签到,获得积分10
42秒前
忧伤的画板完成签到 ,获得积分10
47秒前
48秒前
LiHongXi完成签到 ,获得积分10
48秒前
49秒前
52秒前
guoduan发布了新的文献求助10
52秒前
英俊的铭应助奋斗的帆采纳,获得10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Jailing People With Mental Illness While Awaiting Commitment Hearings 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5858690
求助须知:如何正确求助?哪些是违规求助? 6340627
关于积分的说明 15638792
捐赠科研通 4972572
什么是DOI,文献DOI怎么找? 2682264
邀请新用户注册赠送积分活动 1625970
关于科研通互助平台的介绍 1583212