采样(信号处理)
木星(火箭家族)
冰川
天体生物学
航空航天工程
航程(航空)
比例(比率)
冰卫星
太空探索
遥感
航空学
计算机科学
系统工程
环境科学
地质学
工程类
地理
行星
天文
自然地理学
物理
电信
地图学
探测器
土星
作者
Joseph Bowkett,Steve Chien,Y. Marchetti,Jeremy Nash,Daniel Pastor Moreno,Connor Basich,Matt Gildner,D. I. Kim,Joseph Russino,D. Wang,J. P. de la Croix,Grace Lim,Caleb Wagner,Lori Shiraishi,Philip Twu,Nikola Georgiev,Blair Emanuel,M. E. Cameron,Yumi Iwashita,K. P. Hand
出处
期刊:Science robotics
[American Association for the Advancement of Science]
日期:2025-05-21
卷期号:10 (102)
标识
DOI:10.1126/scirobotics.adi5582
摘要
Europa, a moon of Jupiter, is a high-priority target for space exploration because of its potential to harbor life. A landed mission concept to collect and analyze samples for signs of life was developed over the past decade. Operationally, a critical challenge for such a mission is that the surface environment at the spatial scale of the lander is not well known, requiring that such a mission be capable of acquiring samples in a wide range of surface conditions. Furthermore, the 85.2-hour orbit of Europa around Jupiter limits direct-to-Earth communications to half the orbital period. Last, power constraints and charged-particle irradiation could limit the lifetime of such a mission to several months. This article describes an effort to develop sampling hardware and autonomous software to enable such a Europa surface mission. This multiyear effort leveraged development across multiple simulation and test-bed venues, culminating in a field campaign on the Matanuska Glacier, Alaska, USA, where a cross-disciplinary team demonstrated autonomous end-to-end sampling activities with representative lander hardware.
科研通智能强力驱动
Strongly Powered by AbleSci AI