亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Can Separation Enhance Fusion? An Efficient Framework for Target Detection in Multimodal Remote Sensing Imagery

计算机科学 遥感 分离(统计) 图像融合 人工智能 地质学 机器学习 图像(数学)
作者
Yong Wang,Jing Jia,Rui Liu,Qianqian Cao,Jie Feng,Danping Li,Lei Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:17 (8): 1350-1350
标识
DOI:10.3390/rs17081350
摘要

Target detection in remote sensing images has garnered significant attention due to its wide range of applications. Many traditional methods primarily rely on unimodal data, which often struggle to address the complexities of remote sensing environments. Furthermore, small-target detection remains a critical challenge in remote sensing image analysis, as small targets occupy only a few pixels, making feature extraction difficult and prone to errors. To address these challenges, this paper revisits the existing multimodal fusion methodologies and proposes a novel framework of separation before fusion (SBF). Leveraging this framework, we present Sep-Fusion—an efficient target detection approach tailored for multimodal remote sensing aerial imagery. Within the modality separation module (MSM), the method separates the three RGB channels of visible light images into independent modalities aligned with infrared image channels. Each channel undergoes independent feature extraction through the unimodal block (UB) to effectively capture modality-specific features. The extracted features are then fused using the feature attention fusion (FAF) module, which integrates channel attention and spatial attention mechanisms to enhance multimodal feature interaction. To improve the detection of small targets, an image regeneration module is exploited during the training stage. It incorporates the super-resolution strategy with attention mechanisms to further optimize high-resolution feature representations for subsequent positioning and detection. Sep-Fusion is currently developed on the YOLO series to make itself a potential real-time detector. Its lightweight architecture enables the model to achieve high computational efficiency while maintaining the desired detection accuracy. Experimental results on the multimodal VEDAI dataset show that Sep-Fusion achieves 77.9% mAP50, surpassing many state-of-the-art models. Ablation experiments further illustrate the respective contribution of modality separation and attention fusion. The adaptation of our multimodal method to unimodal target detection is also verified on NWPU VHR-10 and DIOR datasets, which proves Sep-Fusion to be a suitable alternative to current detectors in various remote sensing scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咸鱼lmye完成签到 ,获得积分20
16秒前
小白加油完成签到 ,获得积分10
20秒前
48秒前
量子星尘发布了新的文献求助10
49秒前
小智发布了新的文献求助10
53秒前
MMMMM应助科研通管家采纳,获得30
56秒前
MMMMM应助科研通管家采纳,获得60
56秒前
1分钟前
Shan发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
所所应助研友_拓跋戾采纳,获得10
2分钟前
3分钟前
3分钟前
搜集达人应助陶醉的代丝采纳,获得10
3分钟前
呆萌冰彤完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
杨迪发布了新的文献求助10
5分钟前
昭荃完成签到 ,获得积分0
5分钟前
科研通AI5应助杨迪采纳,获得10
5分钟前
5分钟前
HJL发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
草木完成签到 ,获得积分20
6分钟前
6分钟前
Memory丶冷艳完成签到 ,获得积分10
6分钟前
微纳组刘同完成签到,获得积分10
7分钟前
7分钟前
8分钟前
拼搏海云完成签到,获得积分20
8分钟前
拼搏海云发布了新的文献求助10
8分钟前
量子星尘发布了新的文献求助150
8分钟前
Luis应助汤圆采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270315
求助须知:如何正确求助?哪些是违规求助? 3800788
关于积分的说明 11910900
捐赠科研通 3447661
什么是DOI,文献DOI怎么找? 1891019
邀请新用户注册赠送积分活动 941763
科研通“疑难数据库(出版商)”最低求助积分说明 845870