已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Can Separation Enhance Fusion? An Efficient Framework for Target Detection in Multimodal Remote Sensing Imagery

计算机科学 遥感 分离(统计) 图像融合 人工智能 地质学 机器学习 图像(数学)
作者
Yong Wang,Jing Jia,Rui Liu,Qianqian Cao,Jie Feng,Danping Li,Lei Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:17 (8): 1350-1350
标识
DOI:10.3390/rs17081350
摘要

Target detection in remote sensing images has garnered significant attention due to its wide range of applications. Many traditional methods primarily rely on unimodal data, which often struggle to address the complexities of remote sensing environments. Furthermore, small-target detection remains a critical challenge in remote sensing image analysis, as small targets occupy only a few pixels, making feature extraction difficult and prone to errors. To address these challenges, this paper revisits the existing multimodal fusion methodologies and proposes a novel framework of separation before fusion (SBF). Leveraging this framework, we present Sep-Fusion—an efficient target detection approach tailored for multimodal remote sensing aerial imagery. Within the modality separation module (MSM), the method separates the three RGB channels of visible light images into independent modalities aligned with infrared image channels. Each channel undergoes independent feature extraction through the unimodal block (UB) to effectively capture modality-specific features. The extracted features are then fused using the feature attention fusion (FAF) module, which integrates channel attention and spatial attention mechanisms to enhance multimodal feature interaction. To improve the detection of small targets, an image regeneration module is exploited during the training stage. It incorporates the super-resolution strategy with attention mechanisms to further optimize high-resolution feature representations for subsequent positioning and detection. Sep-Fusion is currently developed on the YOLO series to make itself a potential real-time detector. Its lightweight architecture enables the model to achieve high computational efficiency while maintaining the desired detection accuracy. Experimental results on the multimodal VEDAI dataset show that Sep-Fusion achieves 77.9% mAP50, surpassing many state-of-the-art models. Ablation experiments further illustrate the respective contribution of modality separation and attention fusion. The adaptation of our multimodal method to unimodal target detection is also verified on NWPU VHR-10 and DIOR datasets, which proves Sep-Fusion to be a suitable alternative to current detectors in various remote sensing scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助10
3秒前
JoeyJin完成签到,获得积分10
4秒前
傻傻的从梦完成签到 ,获得积分10
6秒前
府中园马发布了新的文献求助10
8秒前
121卡卡完成签到 ,获得积分10
8秒前
昏睡的乌冬面完成签到 ,获得积分10
11秒前
默默小鸽子完成签到 ,获得积分10
12秒前
13秒前
cc完成签到,获得积分10
13秒前
墨白白发布了新的文献求助10
19秒前
可爱的函函应助yy采纳,获得10
19秒前
慕青应助kangwen采纳,获得30
20秒前
李大王完成签到 ,获得积分10
26秒前
loii举报苏格拉没有底求助涉嫌违规
26秒前
28秒前
doctor2023完成签到,获得积分10
32秒前
平平无奇发布了新的文献求助10
33秒前
34秒前
pattrick发布了新的文献求助10
39秒前
小谢同学完成签到 ,获得积分10
40秒前
GingerF完成签到,获得积分0
45秒前
hnxxangel完成签到,获得积分10
48秒前
Lagom发布了新的文献求助10
51秒前
金蛋蛋完成签到 ,获得积分10
52秒前
quan关注了科研通微信公众号
52秒前
53秒前
54秒前
WhiteCaramel完成签到 ,获得积分10
55秒前
56秒前
kangwen发布了新的文献求助30
56秒前
Frank发布了新的文献求助10
59秒前
1分钟前
尘默发布了新的文献求助10
1分钟前
Orange应助hnxxangel采纳,获得20
1分钟前
隐形曼青应助墨白白采纳,获得10
1分钟前
1分钟前
高大的海豚关注了科研通微信公众号
1分钟前
赘婿应助Lagom采纳,获得10
1分钟前
hh发布了新的文献求助10
1分钟前
余巧完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875385
求助须知:如何正确求助?哪些是违规求助? 6516066
关于积分的说明 15676950
捐赠科研通 4993314
什么是DOI,文献DOI怎么找? 2691433
邀请新用户注册赠送积分活动 1633718
关于科研通互助平台的介绍 1591362