Ultrasound-activated cilia for biofilm control in indwelling medical devices

生物膜 超声波 微流控 纤毛 生物医学工程 纳米技术 医学 材料科学 放射科 生物 细胞生物学 细菌 遗传学
作者
Pedro Amado,Cornel Dillinger,Chaimae Bahou,Ali Hashemi Gheinani,Dominik Obrist,Fiona C. Burkhard,Daniel Ahmed,Francesco Clavica
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (18) 被引量:2
标识
DOI:10.1073/pnas.2418938122
摘要

Biofilm formation and encrustation are major issues in indwelling medical devices, such as urinary stents and catheters, as they lead to blockages and infections. Currently, to limit these effects, frequent replacements of these devices are necessary, resulting in a significant reduction in patients’ quality of life and an increase in healthcare costs. To address these challenges, by leveraging recent advancements in robotics and microfluidic technologies, we envision a self-cleaning system for indwelling medical devices equipped with bioinspired ultrasound-activated cilia. These cilia could be regularly activated transcutaneously by ultrasound, generating steady streaming, which can be used to remove encrusted deposits. In this study, we tested the hypothesis that the generated streaming can efficiently remove encrustations and biofilm from surfaces. To this end, we developed a microfluidic model featuring ultrasound-activated cilia on its wall. We showed that upon ultrasound activation, the cilia generated intense, steady streaming, reaching fluid velocity up to 10 mm/s. In all our experiments, this mechanism was able to efficiently clean typical encrustation (calcium carbonate and oxalate) and biofilm found in urological devices. The generated shear forces released, broke apart, and flushed away encrusted deposits. These findings suggest a broad potential for ultrasound-activated cilia in the maintenance of various medical devices. Compared to existing methods, our approach could reduce the need for invasive procedures, potentially lowering infection risks and enhancing patient comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥肥发布了新的文献求助10
刚刚
JamesPei应助小补给卡采纳,获得10
1秒前
1秒前
2秒前
光年完成签到,获得积分10
2秒前
3秒前
甜9完成签到,获得积分10
4秒前
4秒前
4秒前
凌霄完成签到,获得积分20
5秒前
6秒前
斯文败类应助小羊采纳,获得10
6秒前
6秒前
djc发布了新的文献求助60
6秒前
执着乐双完成签到,获得积分10
7秒前
7秒前
7秒前
陶一二发布了新的文献求助10
8秒前
zz完成签到 ,获得积分10
8秒前
leo发布了新的文献求助10
8秒前
8秒前
不舍天真发布了新的文献求助10
8秒前
炙热莞发布了新的文献求助30
8秒前
短腿小柯基完成签到 ,获得积分10
9秒前
9秒前
废寝忘食发布了新的文献求助10
9秒前
一星如月发布了新的文献求助10
9秒前
10秒前
bixr完成签到,获得积分10
10秒前
欢喜皮卡丘完成签到,获得积分10
10秒前
11秒前
科目三应助Lala采纳,获得10
11秒前
11秒前
小栗子最爱吃糖完成签到 ,获得积分10
11秒前
Yong发布了新的文献求助10
11秒前
Lan发布了新的文献求助10
12秒前
12秒前
luo完成签到,获得积分20
12秒前
Lialilico发布了新的文献求助10
12秒前
Vino发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4520177
求助须知:如何正确求助?哪些是违规求助? 3962596
关于积分的说明 12281401
捐赠科研通 3625751
什么是DOI,文献DOI怎么找? 1995457
邀请新用户注册赠送积分活动 1031515
科研通“疑难数据库(出版商)”最低求助积分说明 922071