已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Text-Assisted Vision Model for Medical Image Segmentation

计算机视觉 计算机科学 图像分割 人工智能 分割 医学影像学 图像(数学) 计算机图形学(图像)
作者
Md. Motiur Rahman,Saeka Rahman,Smriti Bhatt,Miad Faezipour
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/jbhi.2025.3569491
摘要

Precise medical image segmentation is important for automating diagnosis and treatment planning in healthcare. While images present the most significant information for segmenting organs using deep learning models, text reports also provide complementary details that can be leveraged to improve segmentation precision. Performance improvement depends on the proper utilization of text reports and the corresponding images. Most attention modules focus on single-modality computation of spatial, channel, or pixel-level attention. They are ineffective in cross-modal alignment, raising issues in multi-modal scenarios. This study addresses these gaps by presenting a text-assisted vision (TAV) model for medical image segmentation with a novel attention computation module named triguided attention module (TGAM). TGAM computes visual-visual, language-language, and language-visual attention, enabling the model to understand the important features and correlation between images and medical notes. This module helps the model identify the relevant features within images, text annotations, and text annotations to visual interactions. We incorporate an attention gate (AG) that modulates the influence of TGAM, ensuring it does not overflow the encoded features with irrelevant or redundant information, while maintaining their uniqueness. We evaluated the performance of TAV on two popular datasets containing images and corresponding text annotations. We find TAV to be a new state-of-the-art model, as it improves the performance by 2-7% compared to other models. Extensive experiments were performed to demonstrate the effectiveness of each component of the proposed model. The code and datasets are available on Github1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
清爽的机器猫完成签到 ,获得积分10
2秒前
本严发布了新的文献求助200
4秒前
4秒前
不安青牛应助猪八戒采纳,获得10
4秒前
vvvaee发布了新的文献求助10
5秒前
景茶茶完成签到 ,获得积分0
5秒前
淡定访枫发布了新的文献求助10
5秒前
青苔完成签到,获得积分10
7秒前
wbing驳回了Akim应助
8秒前
科研通AI6应助无情的尔风采纳,获得10
11秒前
11秒前
11秒前
科研通AI2S应助淡定访枫采纳,获得10
12秒前
巡山小钻风完成签到,获得积分10
13秒前
14秒前
共享精神应助尘默采纳,获得20
18秒前
18秒前
20秒前
fine完成签到,获得积分20
23秒前
LHYX发布了新的文献求助10
23秒前
26秒前
26秒前
27秒前
852应助张益发采纳,获得10
28秒前
30秒前
核桃应助现代丹亦采纳,获得10
31秒前
orixero应助任性的水风采纳,获得10
32秒前
wjw123发布了新的文献求助10
33秒前
33秒前
Atropine发布了新的文献求助10
34秒前
晨辉完成签到,获得积分10
35秒前
35秒前
35秒前
ZhenpuWang发布了新的文献求助10
36秒前
36秒前
棕榈完成签到,获得积分10
37秒前
悦风完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4356853
求助须知:如何正确求助?哪些是违规求助? 3859791
关于积分的说明 12042203
捐赠科研通 3501413
什么是DOI,文献DOI怎么找? 1921613
邀请新用户注册赠送积分活动 963991
科研通“疑难数据库(出版商)”最低求助积分说明 863471