A normal cloud model-based decision making method under multi-granular probabilistic linguistic environment for evaluating of wetland ecosystem services

概率逻辑 计算机科学 排名(信息检索) 湿地 云计算 秩(图论) 度量(数据仓库) 数据挖掘 人工智能 生态学 数学 生物 操作系统 组合数学
作者
Ling Weng,Jian Lin,Zhangxu Lin,Zeshui Xu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:225: 120202-120202 被引量:13
标识
DOI:10.1016/j.eswa.2023.120202
摘要

An accurate understanding of wetlands and the various functions they provide to humans through the evaluation of wetland ecosystem services values (WESVs) is essential for the rational and effective management of wetlands. In practice, obtaining quantitative data on wetlands is a challenge. Therefore, a new and systematic multi-attribute group decision-making method (MAGDM) was constructed. After collecting WESV probabilistic linguistic evaluation data from multiple experts, the method was used to compare and rank wetlands with known data and wetlands with unknown data, so as to indirectly obtain WESV evaluation. Specifically, the concept of multi-granular probabilistic linguistic cloud (MPLC) with its basic algorithm, deviation measure, and cloud information fusion tool is first presented. It is used to deal with the problem of multi-granular linguistic information due to the different knowledge backgrounds of experts. Secondly, two models for determining attribute weights and expert weights are constructed to provide solutions to the problem of unknown weight information. By improving the final ranking method of the MULTIMOORA method and taking into account the risk-averse psychological activities of the experts, the prospect theory-based MULTIMOORA method under cloud environment is proposed. Finally, some wetlands are used as examples to demonstrate the applicability of the constructed MAGDM method. The simulation results show that the proposed method is computationally more straightforward and robust than before, and the basic idea is logical and understandable. In addition, corresponding sensitivity and comparative analyses were further conducted to demonstrate the superiority and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冉蓝完成签到,获得积分10
刚刚
seashell完成签到 ,获得积分10
1秒前
城南花已开完成签到,获得积分10
2秒前
圆圆完成签到 ,获得积分10
2秒前
橘子的角动量完成签到,获得积分10
3秒前
星星完成签到,获得积分10
4秒前
4秒前
7秒前
之之完成签到,获得积分10
7秒前
123完成签到,获得积分10
9秒前
9秒前
爆米花应助博修采纳,获得10
10秒前
lukehan发布了新的文献求助10
10秒前
冰冰发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
Nora完成签到 ,获得积分10
15秒前
抽屉里的猫完成签到,获得积分10
15秒前
18秒前
18秒前
娜娜子发布了新的文献求助30
18秒前
12345完成签到,获得积分10
19秒前
hahaha应助代娇采纳,获得10
19秒前
阿尼完成签到,获得积分10
19秒前
不羁完成签到 ,获得积分10
23秒前
fls221完成签到,获得积分10
23秒前
情怀应助极电采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
积极从蕾应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得10
29秒前
herococa应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
Orange应助科研通管家采纳,获得10
29秒前
29秒前
adam完成签到,获得积分10
29秒前
29秒前
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4164127
求助须知:如何正确求助?哪些是违规求助? 3699624
关于积分的说明 11681137
捐赠科研通 3389296
什么是DOI,文献DOI怎么找? 1858675
邀请新用户注册赠送积分活动 919184
科研通“疑难数据库(出版商)”最低求助积分说明 831977