K-DGHC: A hierarchical clustering method based on K-dominance granularity

欧几里德距离 聚类分析 数学 粒度 欧几里得空间 层次聚类 模式识别(心理学) 相似性(几何) 欧几里德距离矩阵 闵可夫斯基距离 数据挖掘 计算机科学 算法 人工智能 组合数学 操作系统 图像(数学)
作者
Bin Yu,Zijian Zheng,Jianhua Dai
出处
期刊:Information Sciences [Elsevier]
卷期号:632: 232-251 被引量:10
标识
DOI:10.1016/j.ins.2023.03.012
摘要

Existing hierarchical clustering (HC) algorithms generally depend on the Euclidean characteristic metric (Euclidean distance, Manhattan distance, Chebyshev distance, etc.) on Euclidean space to describe the similarity between objects, which makes the clustering process oriented to data sets with uniform and regular distribution in Euclidean space. Although such methods can visually distinguish the cluster distribution of data, it is not effective for the data sets which are densely distributed, interlaced and complex in Euclidean space. As a scalable, efficient and robust method, granular computing generally analyzes data from the perspective of similarity and proximity. In consideration of the advantages of granular computing in extracting data information from a multi-level perspective, in order to reduce the limitations of HC methods based on Euclidean features on non-Euclidean data, this paper proposes a novel HC method based on non-Euclidean feature structure. First, this paper constructs the similarity between objects based on K-dominance granularity and neighborhood search, and considers the environmental information of data points from both global and local perspectives. Secondly, a new HC method based on non-Euclidean feature structure is designed on the basis of the similarity measurement constructed in this paper. Finally, through comparative analysis, the experimental results prove that our method can more accurately identify the densely distributed and interlaced data sets in Euclidean space; it is significantly better than comparison algorithms using different Euclidean features to measure similarity; it has good robustness when additional Gaussian noise is added.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
焱焱发布了新的文献求助10
刚刚
小狄发布了新的文献求助10
3秒前
ViVi水泥要干喽完成签到 ,获得积分10
3秒前
3秒前
脑洞疼应助海珠采纳,获得10
3秒前
4秒前
JUNE发布了新的文献求助10
5秒前
7秒前
wanci应助害怕的芸采纳,获得10
7秒前
星星粥完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
美丽的乘风完成签到,获得积分10
11秒前
11秒前
11秒前
尹凯完成签到 ,获得积分10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
13秒前
Orange应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
Owen应助科研通管家采纳,获得10
13秒前
Ava应助爆炒大栗子采纳,获得10
13秒前
华仔应助虚心向上采纳,获得10
14秒前
小青椒应助yudoyaer采纳,获得30
14秒前
任伟超发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
MAX完成签到,获得积分10
17秒前
半点发布了新的文献求助10
17秒前
海珠发布了新的文献求助10
18秒前
18秒前
Dengolia完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5806126
求助须知:如何正确求助?哪些是违规求助? 5854174
关于积分的说明 15517989
捐赠科研通 4931275
什么是DOI,文献DOI怎么找? 2655092
邀请新用户注册赠送积分活动 1601759
关于科研通互助平台的介绍 1556818