K-DGHC: A hierarchical clustering method based on K-dominance granularity

欧几里德距离 聚类分析 数学 粒度 欧几里得空间 层次聚类 模式识别(心理学) 相似性(几何) 欧几里德距离矩阵 闵可夫斯基距离 数据挖掘 计算机科学 算法 人工智能 组合数学 操作系统 图像(数学)
作者
Bin Yu,Zijian Zheng,Jianhua Dai
出处
期刊:Information Sciences [Elsevier BV]
卷期号:632: 232-251 被引量:2
标识
DOI:10.1016/j.ins.2023.03.012
摘要

Existing hierarchical clustering (HC) algorithms generally depend on the Euclidean characteristic metric (Euclidean distance, Manhattan distance, Chebyshev distance, etc.) on Euclidean space to describe the similarity between objects, which makes the clustering process oriented to data sets with uniform and regular distribution in Euclidean space. Although such methods can visually distinguish the cluster distribution of data, it is not effective for the data sets which are densely distributed, interlaced and complex in Euclidean space. As a scalable, efficient and robust method, granular computing generally analyzes data from the perspective of similarity and proximity. In consideration of the advantages of granular computing in extracting data information from a multi-level perspective, in order to reduce the limitations of HC methods based on Euclidean features on non-Euclidean data, this paper proposes a novel HC method based on non-Euclidean feature structure. First, this paper constructs the similarity between objects based on K-dominance granularity and neighborhood search, and considers the environmental information of data points from both global and local perspectives. Secondly, a new HC method based on non-Euclidean feature structure is designed on the basis of the similarity measurement constructed in this paper. Finally, through comparative analysis, the experimental results prove that our method can more accurately identify the densely distributed and interlaced data sets in Euclidean space; it is significantly better than comparison algorithms using different Euclidean features to measure similarity; it has good robustness when additional Gaussian noise is added.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Amao发布了新的文献求助10
刚刚
王灰灰1发布了新的文献求助10
1秒前
999发布了新的文献求助80
1秒前
2秒前
欧阳完成签到 ,获得积分10
4秒前
zoe完成签到,获得积分20
5秒前
天天快乐应助HJJHJH采纳,获得10
5秒前
贪玩的一曲完成签到,获得积分10
5秒前
英俊的铭应助研友_ZbP41L采纳,获得10
7秒前
999完成签到,获得积分10
7秒前
yumeng发布了新的文献求助10
7秒前
小玉米完成签到 ,获得积分10
8秒前
9秒前
王灰灰1完成签到,获得积分10
10秒前
草木完成签到,获得积分20
12秒前
xiao_J发布了新的文献求助30
14秒前
14秒前
15秒前
16秒前
甲壬完成签到,获得积分10
16秒前
踏实的纸飞机完成签到 ,获得积分10
18秒前
皮皮发布了新的文献求助10
20秒前
细心夏槐完成签到 ,获得积分10
20秒前
深情安青应助zyj123采纳,获得10
20秒前
ddd777完成签到,获得积分10
20秒前
研友_ZbP41L发布了新的文献求助10
21秒前
深情的友易完成签到,获得积分10
22秒前
23秒前
wy.he应助白露采纳,获得10
23秒前
24秒前
29秒前
我是老大应助科研小白采纳,获得10
30秒前
清风明月发布了新的文献求助10
30秒前
科研通AI5应助QR采纳,获得10
31秒前
三土发布了新的文献求助10
34秒前
36秒前
36秒前
Artemis完成签到,获得积分10
36秒前
桐桐应助xiao_J采纳,获得10
37秒前
kouryoufu完成签到,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339