Research on Ship Detection Method of Optical Remote Sensing Image Based on Deep Learning

计算机科学 深度学习 目标检测 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 遥感 地质学
作者
Lixin Zhang,Hongtao Yin
标识
DOI:10.1109/icsmd57530.2022.10058312
摘要

At present, the ship detection of optical remote sensing images based on deep learning has made great progress. However, due to the different use scenarios and specific tasks, how to select an appropriate algorithm according to the characteristics of the target and the target priority, so that achieve the detection goal while consider the detection accuracy and speed, still requires relevant research. In this paper, ship detection methods for optical remote sensing images are studied based on deep learning. First, to meet the needs of ship detection research, according to the characteristics of target size and type, datasets of medium and large ships and small target ships are made, and model training and testing are conducted based on Faster R-CNN, YOLOv4, and SSD algorithms respectively. The actual detection performance of the three algorithms under different ship sizes is obtained. The results show that for medium and large targets, Faster R-CNN has the highest precision, the next is YOLOv4, and SSD is the lowest. The detection speed is that SSD is the fastest, the next is YOLOv4, Faster R-CNN is the slowest. For small target ship detection, YOLOv4 has the best detection accuracy and SSD has the fastest detection speed. Faster R-CNN is not as accurate and fast as the other two algorithms. In addition, for different type ships, the detection results of different algorithms also have some differences. In practical applications, different methods should be used to achieve detection by comprehensively considering such factors as target size, target priority, detection accuracy and speed requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸的翼发布了新的文献求助10
刚刚
刚刚
上官若男应助13采纳,获得10
刚刚
yan123完成签到,获得积分10
1秒前
没人比我更爱喜之郎大果冻完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
wangling2333发布了新的文献求助30
2秒前
了了完成签到,获得积分20
3秒前
调皮善斓发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
星星星发布了新的文献求助10
5秒前
ml完成签到,获得积分10
5秒前
677发布了新的文献求助10
5秒前
ldkl应助ELisa采纳,获得30
6秒前
妩媚的蛋挞完成签到,获得积分10
6秒前
BSFXZ完成签到,获得积分10
6秒前
kyan发布了新的文献求助10
6秒前
风趣麦片发布了新的文献求助10
6秒前
7秒前
在水一方应助cvev采纳,获得10
7秒前
7秒前
lolin741完成签到,获得积分10
7秒前
7秒前
懂事梨发布了新的文献求助10
7秒前
wan发布了新的文献求助10
8秒前
mxp发布了新的文献求助10
8秒前
等风等你完成签到,获得积分10
8秒前
火星上友易完成签到,获得积分10
8秒前
shain发布了新的文献求助10
9秒前
9秒前
Hello应助journey_qq采纳,获得10
9秒前
大个应助朴茶采纳,获得10
9秒前
Crt发布了新的文献求助10
10秒前
10秒前
耿星驰发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4464524
求助须知:如何正确求助?哪些是违规求助? 3926899
关于积分的说明 12185945
捐赠科研通 3579607
什么是DOI,文献DOI怎么找? 1966945
邀请新用户注册赠送积分活动 1005467
科研通“疑难数据库(出版商)”最低求助积分说明 899748