Automation of tree‐ring detection and measurements using deep learning

计算机科学 自动化 人工智能 管道(软件) 树(集合论) 容器(类型理论) 深度学习 机器学习 模式识别(心理学) 操作系统 数学 工程类 机械工程 数学分析
作者
Miroslav Poláček,Alexis Arizpe,Patrick Hüther,Lisa Weidlich,Sonja Steindl,Kelly Swarts
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:14 (9): 2233-2242 被引量:4
标识
DOI:10.1111/2041-210x.14183
摘要

Abstract Core samples from trees are a critical reservoir of ecological information, informing our understanding of past climates, as well as contemporary ecosystem responses to global change. Manual measurements of annual growth rings in trees are slow, labour‐intensive and subject to human bias, hindering the generation of big datasets. We present an alternative, neural network‐based implementation that automates detection and measurement of tree‐ring boundaries from coniferous species. We trained our Mask R‐CNN extensively on over 8000 manually annotated ring boundaries from microscope‐imaged Norway Spruce Picea abies increment cores. We assessed the performance of the trained model after post‐processing on real‐world data generated from our core processing pipeline. The CNN after post‐processing performed well, with recognition of over 98% of ring boundaries (recall) with a precision in detection of 96% when tested on real‐world data. Additionally, we have implemented automatic measurements based on minimum distance between rings. With minimal editing for missed ring detections, these measurements were 98% correlated with human measurements of the same samples. Tests on other three conifer species demonstrate that the CNN generalizes well to other species with similar structure. We demonstrate the efficacy of automating the measurement of growth increment in tree core samples. Our CNN‐based system provides high predictive performance in terms of both tree‐ring detection and growth rate determination. Our application is readily deployable as a Docker container and requires only basic command line skills. Additionally, an easy re‐training option allows users to expand capabilities to other wood types. Application outputs include both editable annotations of predictions as well as ring‐width measurements in a commonly used .pos format, facilitating the efficient generation of large ring‐width measurement datasets from increment core samples, an important source of environmental data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
勤耕苦读发布了新的文献求助10
2秒前
梁思倩完成签到,获得积分10
3秒前
4秒前
jayjiao发布了新的文献求助20
4秒前
完美世界应助yybb2012采纳,获得10
4秒前
耍酷雁卉完成签到,获得积分10
6秒前
小虫发布了新的文献求助80
7秒前
嘟嘟嘟完成签到 ,获得积分10
8秒前
8秒前
apple完成签到,获得积分10
9秒前
raner发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助30
10秒前
叶子发布了新的文献求助10
11秒前
Owen应助hwezhu采纳,获得10
12秒前
幸运的张发布了新的文献求助10
12秒前
小马甲应助霞霞子采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
打打应助怕孤单的石头采纳,获得10
14秒前
14秒前
叶子完成签到,获得积分20
14秒前
城九寒完成签到,获得积分10
14秒前
勤劳菠萝发布了新的文献求助10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
Sc应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
14秒前
hhah发布了新的文献求助10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
Sc应助科研通管家采纳,获得10
14秒前
14秒前
所所应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
15秒前
所所应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805254
求助须知:如何正确求助?哪些是违规求助? 5848462
关于积分的说明 15515697
捐赠科研通 4930591
什么是DOI,文献DOI怎么找? 2654668
邀请新用户注册赠送积分活动 1601464
关于科研通互助平台的介绍 1556460