Automation of tree‐ring detection and measurements using deep learning

计算机科学 自动化 人工智能 管道(软件) 树(集合论) 容器(类型理论) 深度学习 机器学习 模式识别(心理学) 操作系统 数学 工程类 机械工程 数学分析
作者
Miroslav Poláček,Alexis Arizpe,Patrick Hüther,Lisa Weidlich,Sonja Steindl,Kelly Swarts
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:14 (9): 2233-2242 被引量:4
标识
DOI:10.1111/2041-210x.14183
摘要

Abstract Core samples from trees are a critical reservoir of ecological information, informing our understanding of past climates, as well as contemporary ecosystem responses to global change. Manual measurements of annual growth rings in trees are slow, labour‐intensive and subject to human bias, hindering the generation of big datasets. We present an alternative, neural network‐based implementation that automates detection and measurement of tree‐ring boundaries from coniferous species. We trained our Mask R‐CNN extensively on over 8000 manually annotated ring boundaries from microscope‐imaged Norway Spruce Picea abies increment cores. We assessed the performance of the trained model after post‐processing on real‐world data generated from our core processing pipeline. The CNN after post‐processing performed well, with recognition of over 98% of ring boundaries (recall) with a precision in detection of 96% when tested on real‐world data. Additionally, we have implemented automatic measurements based on minimum distance between rings. With minimal editing for missed ring detections, these measurements were 98% correlated with human measurements of the same samples. Tests on other three conifer species demonstrate that the CNN generalizes well to other species with similar structure. We demonstrate the efficacy of automating the measurement of growth increment in tree core samples. Our CNN‐based system provides high predictive performance in terms of both tree‐ring detection and growth rate determination. Our application is readily deployable as a Docker container and requires only basic command line skills. Additionally, an easy re‐training option allows users to expand capabilities to other wood types. Application outputs include both editable annotations of predictions as well as ring‐width measurements in a commonly used .pos format, facilitating the efficient generation of large ring‐width measurement datasets from increment core samples, an important source of environmental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝士熊发布了新的文献求助30
2秒前
2秒前
WUYONGSHUAI发布了新的文献求助10
3秒前
JamesPei应助cookie486采纳,获得10
4秒前
edsenone发布了新的文献求助10
4秒前
土豆子完成签到,获得积分20
5秒前
科研通AI5应助7123采纳,获得10
6秒前
6秒前
谨慎的夏发布了新的文献求助10
7秒前
7秒前
8秒前
天天快乐应助kingripple采纳,获得10
10秒前
冷漠的布丁完成签到,获得积分10
10秒前
斯内克关注了科研通微信公众号
12秒前
土豆子关注了科研通微信公众号
12秒前
细心蚂蚁完成签到,获得积分10
12秒前
谨慎的夏完成签到,获得积分10
14秒前
纷纷故事完成签到,获得积分0
15秒前
吃掉老苗子完成签到,获得积分10
15秒前
liherong完成签到,获得积分10
15秒前
15秒前
add完成签到 ,获得积分10
18秒前
18秒前
Happy完成签到 ,获得积分10
19秒前
19秒前
向南驳回了一一应助
20秒前
特特雷珀萨努完成签到 ,获得积分10
21秒前
科研通AI2S应助战斗暴龙兽采纳,获得10
22秒前
Owen应助杨氏采纳,获得10
22秒前
22秒前
冲冲冲发布了新的文献求助10
23秒前
科研通AI5应助wei采纳,获得10
23秒前
科研通AI5应助苏瑾深采纳,获得10
24秒前
自信的海瑶完成签到 ,获得积分10
25秒前
kingripple发布了新的文献求助10
25秒前
Orange应助WUYONGSHUAI采纳,获得10
28秒前
28秒前
慕子完成签到 ,获得积分10
36秒前
打打应助上上谦采纳,获得10
37秒前
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435