亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence-based radiomics in bone tumors: Technical advances and clinical application

无线电技术 人工智能 计算机科学 医学 机器学习
作者
Yichen Meng,Yue Yang,Miao Hu,Zheng Zhang,Chao Zhou
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:95: 75-87 被引量:32
标识
DOI:10.1016/j.semcancer.2023.07.003
摘要

Radiomics is the extraction of predefined mathematic features from medical images for predicting variables of clinical interest. Recent research has demonstrated that radiomics can be processed by artificial intelligence algorithms to reveal complex patterns and trends for diagnosis, and prediction of prognosis and response to treatment modalities in various types of cancer. Artificial intelligence tools can utilize radiological images to solve next-generation issues in clinical decision making. Bone tumors can be classified as primary and secondary (metastatic) tumors. Osteosarcoma, Ewing sarcoma, and chondrosarcoma are the dominating primary tumors of bone. The development of bone tumor model systems and relevant research, and the assessment of novel treatment methods are ongoing to improve clinical outcomes, notably for patients with metastases. Artificial intelligence and radiomics have been utilized in almost full spectrum of clinical care of bone tumors. Radiomics models have achieved excellent performance in the diagnosis and grading of bone tumors. Furthermore, the models enable to predict overall survival, metastases, and recurrence. Radiomics features have exhibited promise in assisting therapeutic planning and evaluation, especially neoadjuvant chemotherapy. This review provides an overview of the evolution and opportunities for artificial intelligence in imaging, with a focus on hand-crafted features and deep learning-based radiomics approaches. We summarize the current application of artificial intelligence-based radiomics both in primary and metastatic bone tumors, and discuss the limitations and future opportunities of artificial intelligence-based radiomics in this field. In the era of personalized medicine, our in-depth understanding of emerging artificial intelligence-based radiomics approaches will bring innovative solutions to bone tumors and achieve clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助我鸡丢了采纳,获得10
3秒前
6秒前
huohuo发布了新的文献求助10
9秒前
cc发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
望远Arena发布了新的文献求助30
13秒前
tuanheqi应助科研通管家采纳,获得80
14秒前
14秒前
沉默的友安完成签到 ,获得积分10
15秒前
LPL完成签到,获得积分10
15秒前
李健完成签到,获得积分10
16秒前
tim发布了新的文献求助10
16秒前
科研通AI5应助cc采纳,获得10
16秒前
zhj发布了新的文献求助10
16秒前
LQH发布了新的文献求助10
17秒前
wanci应助tim采纳,获得10
20秒前
24秒前
Tu完成签到 ,获得积分10
27秒前
29秒前
我鸡丢了发布了新的文献求助10
31秒前
敢敢完成签到 ,获得积分10
33秒前
38秒前
领导范儿应助安蓝采纳,获得10
41秒前
LPL发布了新的文献求助10
44秒前
49秒前
50秒前
50秒前
51秒前
54秒前
冷静新烟发布了新的文献求助10
55秒前
安蓝发布了新的文献求助10
58秒前
59秒前
健壮的海蓝完成签到 ,获得积分10
59秒前
1分钟前
科研通AI6应助62ccc采纳,获得10
1分钟前
楠楠2001完成签到 ,获得积分10
1分钟前
www发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4694400
求助须知:如何正确求助?哪些是违规求助? 4064962
关于积分的说明 12568338
捐赠科研通 3763652
什么是DOI,文献DOI怎么找? 2078640
邀请新用户注册赠送积分活动 1106923
科研通“疑难数据库(出版商)”最低求助积分说明 985147