Artificial intelligence-based radiomics in bone tumors: Technical advances and clinical application

无线电技术 人工智能 计算机科学 医学 机器学习
作者
Yichen Meng,Yue Yang,Miao Hu,Zheng Zhang,Chao Zhou
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:95: 75-87 被引量:21
标识
DOI:10.1016/j.semcancer.2023.07.003
摘要

Radiomics is the extraction of predefined mathematic features from medical images for predicting variables of clinical interest. Recent research has demonstrated that radiomics can be processed by artificial intelligence algorithms to reveal complex patterns and trends for diagnosis, and prediction of prognosis and response to treatment modalities in various types of cancer. Artificial intelligence tools can utilize radiological images to solve next-generation issues in clinical decision making. Bone tumors can be classified as primary and secondary (metastatic) tumors. Osteosarcoma, Ewing sarcoma, and chondrosarcoma are the dominating primary tumors of bone. The development of bone tumor model systems and relevant research, and the assessment of novel treatment methods are ongoing to improve clinical outcomes, notably for patients with metastases. Artificial intelligence and radiomics have been utilized in almost full spectrum of clinical care of bone tumors. Radiomics models have achieved excellent performance in the diagnosis and grading of bone tumors. Furthermore, the models enable to predict overall survival, metastases, and recurrence. Radiomics features have exhibited promise in assisting therapeutic planning and evaluation, especially neoadjuvant chemotherapy. This review provides an overview of the evolution and opportunities for artificial intelligence in imaging, with a focus on hand-crafted features and deep learning-based radiomics approaches. We summarize the current application of artificial intelligence-based radiomics both in primary and metastatic bone tumors, and discuss the limitations and future opportunities of artificial intelligence-based radiomics in this field. In the era of personalized medicine, our in-depth understanding of emerging artificial intelligence-based radiomics approaches will bring innovative solutions to bone tumors and achieve clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助柚仝采纳,获得10
1秒前
上官枫发布了新的文献求助10
1秒前
李健应助NXK采纳,获得10
2秒前
酷波er应助暴走火箭筒采纳,获得10
2秒前
3秒前
开放访天完成签到 ,获得积分10
5秒前
领导范儿应助上官枫采纳,获得10
7秒前
llnysl完成签到 ,获得积分10
8秒前
李爱国应助kindong采纳,获得10
10秒前
11秒前
研友_Zr5Dpn完成签到,获得积分10
11秒前
13秒前
naiyouqiu1989完成签到,获得积分10
14秒前
肝胆外科医生完成签到,获得积分10
14秒前
干净仰完成签到,获得积分10
15秒前
学术小垃圾完成签到,获得积分10
16秒前
16秒前
Anonymous完成签到,获得积分10
17秒前
稀饭发布了新的文献求助10
17秒前
18秒前
无花果应助坚强的安柏采纳,获得10
23秒前
hjkl完成签到,获得积分10
24秒前
kindong发布了新的文献求助10
24秒前
27秒前
28秒前
帕尼灬尼完成签到,获得积分10
28秒前
29秒前
科研通AI5应助稀饭采纳,获得10
29秒前
30秒前
小二郎应助Mandy采纳,获得10
31秒前
dashi完成签到 ,获得积分10
32秒前
Alerina完成签到,获得积分10
32秒前
Abiu发布了新的文献求助10
34秒前
35秒前
caicai发布了新的文献求助10
35秒前
kindong完成签到,获得积分10
35秒前
36秒前
笑点低中心完成签到,获得积分10
38秒前
39秒前
夏雪冬花发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322050
关于积分的说明 10208614
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878