Effect of molecular structure on the adsorption behavior of sulfanilamide antibiotics on crumpled graphene balls

石墨烯 吸附 氧化物 氢键 电子受体 化学 磺胺 分子 化学工程 接受者 材料科学 组合化学 纳米技术 有机化学 工程类 物理 凝聚态物理 生物化学
作者
Han Fu,Kimberly A. Gray
出处
期刊:Water Research [Elsevier]
卷期号:242: 120177-120177 被引量:9
标识
DOI:10.1016/j.watres.2023.120177
摘要

Since the 1930s, sulfonamide(SA)-based antibiotics have served as important pharmaceuticals, but their widespread detection in water systems threatens aquatic organisms and human health. Adsorption via graphene, its modified form (graphene oxide, GO), and related nanocomposites is a promising method to remove SAs, owing to the strong and selective surface affinity of graphene/GO with aromatic compounds. However, a deeper understanding of the mechanisms of interaction between the chemical structure of SAs and the GO surface is required to predict the performance of GO-based nanostructured materials to adsorb the individual chemicals making up this large class of pharmaceuticals. In this research, we studied the adsorptive performance of 3D crumpled graphene balls (CGBs) to remove 10 SAs and 13 structural analogs from water. The maximum adsorption capacity qm of SAs on CGB increased with the number of (1) aromatic rings; (2) electron-donating functional groups; (3) hydrogen bonding acceptor sites. Furthermore, the CGB surface displayed a preference for homocyclic relative to heterocyclic aromatic structures. A leading mechanism, π-π electron-donor-acceptor interaction, combined with hydrogen bonding, explains these trends. We developed a multiple linear regression model capable of predicting the qm as a function of SA chemical structure and properties and the oxidation level of CGB. The model predicted the adsorptive behaviors of SAs well with the exception of a chlorinated/fluorinated SA. The insights afforded by these experiments and modeling will aid in tailoring graphene-based adsorbents to remove micropollutants from water and reduce the growing public health threats associated with antibiotic resistance and endocrine-disrupting chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助momo采纳,获得10
刚刚
1秒前
cc发布了新的文献求助10
2秒前
3秒前
3秒前
美好储完成签到,获得积分10
4秒前
魁梧的怜南完成签到,获得积分10
4秒前
迷人冥完成签到 ,获得积分10
5秒前
lalalala发布了新的文献求助10
5秒前
5秒前
科研狗应助栗栗采纳,获得50
6秒前
7秒前
8秒前
风清扬发布了新的文献求助10
8秒前
8秒前
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
良辰发布了新的文献求助10
11秒前
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
13秒前
15秒前
16秒前
momo发布了新的文献求助10
16秒前
CipherSage应助zhaopenghui采纳,获得10
18秒前
19秒前
19秒前
19秒前
20秒前
小马甲应助奥利奥采纳,获得10
20秒前
22秒前
想毕业发布了新的文献求助10
23秒前
隐形曼青应助ZS采纳,获得10
24秒前
蓝天应助杨华启采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869693
求助须知:如何正确求助?哪些是违规求助? 6454404
关于积分的说明 15661690
捐赠科研通 4985581
什么是DOI,文献DOI怎么找? 2688440
邀请新用户注册赠送积分活动 1630862
关于科研通互助平台的介绍 1588979