Effect of molecular structure on the adsorption behavior of sulfanilamide antibiotics on crumpled graphene balls

石墨烯 吸附 氧化物 氢键 电子受体 化学 磺胺 分子 化学工程 接受者 材料科学 组合化学 纳米技术 有机化学 工程类 物理 生物化学 凝聚态物理
作者
Han Fu,Kimberly A. Gray
出处
期刊:Water Research [Elsevier BV]
卷期号:242: 120177-120177 被引量:9
标识
DOI:10.1016/j.watres.2023.120177
摘要

Since the 1930s, sulfonamide(SA)-based antibiotics have served as important pharmaceuticals, but their widespread detection in water systems threatens aquatic organisms and human health. Adsorption via graphene, its modified form (graphene oxide, GO), and related nanocomposites is a promising method to remove SAs, owing to the strong and selective surface affinity of graphene/GO with aromatic compounds. However, a deeper understanding of the mechanisms of interaction between the chemical structure of SAs and the GO surface is required to predict the performance of GO-based nanostructured materials to adsorb the individual chemicals making up this large class of pharmaceuticals. In this research, we studied the adsorptive performance of 3D crumpled graphene balls (CGBs) to remove 10 SAs and 13 structural analogs from water. The maximum adsorption capacity qm of SAs on CGB increased with the number of (1) aromatic rings; (2) electron-donating functional groups; (3) hydrogen bonding acceptor sites. Furthermore, the CGB surface displayed a preference for homocyclic relative to heterocyclic aromatic structures. A leading mechanism, π-π electron-donor-acceptor interaction, combined with hydrogen bonding, explains these trends. We developed a multiple linear regression model capable of predicting the qm as a function of SA chemical structure and properties and the oxidation level of CGB. The model predicted the adsorptive behaviors of SAs well with the exception of a chlorinated/fluorinated SA. The insights afforded by these experiments and modeling will aid in tailoring graphene-based adsorbents to remove micropollutants from water and reduce the growing public health threats associated with antibiotic resistance and endocrine-disrupting chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
立尽西风完成签到,获得积分10
1秒前
大模型应助rmbsLHC采纳,获得10
2秒前
2秒前
2秒前
科研通AI2S应助Kyle采纳,获得10
3秒前
华仔应助lalaland采纳,获得10
4秒前
4秒前
xiax03完成签到,获得积分10
5秒前
5秒前
6秒前
foreverlessness完成签到,获得积分10
6秒前
Elcric发布了新的文献求助10
8秒前
xiaoliu完成签到,获得积分10
8秒前
俊逸柏柳发布了新的文献求助10
9秒前
lameliu完成签到,获得积分10
11秒前
科研通AI5应助Elcric采纳,获得10
13秒前
裴道天完成签到 ,获得积分10
13秒前
顾矜应助鸢尾蓝采纳,获得10
14秒前
16秒前
17秒前
Tao发布了新的文献求助10
20秒前
木子李完成签到,获得积分10
21秒前
elsazhou发布了新的文献求助10
21秒前
KSGGS完成签到,获得积分10
21秒前
Ava应助maodou采纳,获得10
22秒前
1111发布了新的文献求助10
23秒前
Elcric完成签到,获得积分20
23秒前
11哥应助Lijunjie采纳,获得10
24秒前
rmbsLHC发布了新的文献求助10
24秒前
儒雅香彤完成签到 ,获得积分10
25秒前
科研通AI5应助elsazhou采纳,获得10
30秒前
NexusExplorer应助俊逸柏柳采纳,获得10
30秒前
Tao完成签到,获得积分10
31秒前
迷了路的猫完成签到,获得积分10
31秒前
31秒前
研友_VZG7GZ应助dd采纳,获得10
32秒前
XZZH完成签到,获得积分10
32秒前
lalaland完成签到,获得积分10
34秒前
美满忆安完成签到,获得积分10
34秒前
11122发布了新的文献求助10
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784142
求助须知:如何正确求助?哪些是违规求助? 3329244
关于积分的说明 10241014
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671268
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759250