A knowledge-enhanced interpretable network for early recurrence prediction of hepatocellular carcinoma via multi-phase CT imaging

可解释性 机器学习 概化理论 领域知识 人工智能 计算机科学 深度学习 数据挖掘 模式识别(心理学) 统计 数学
作者
Yu Gao,Xue Yang,Hongjun Li,Da‐Wei Ding
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:189: 105509-105509 被引量:11
标识
DOI:10.1016/j.ijmedinf.2024.105509
摘要

Predicting early recurrence (ER) of hepatocellular carcinoma (HCC) accurately can guide treatment decisions and further enhance survival. Computed tomography (CT) imaging, analyzed by deep learning (DL) models combining domain knowledge, has been employed for the prediction. However, these DL models utilized late fusion, restricting the interaction between domain knowledge and images during feature extraction, thereby limiting the prediction performance and compromising decision-making interpretability. We propose a novel Vision Transformer (ViT)-based DL network, referred to as Dual-Style ViT (DSViT), to augment the interaction between domain knowledge and images and the effective fusion among multi-phase CT images for improving both predictive performance and interpretability. We apply the DSViT to develop pre-/post-operative models for predicting ER. Within DSViT, to balance the utilization between domain knowledge and images within DSViT, we propose an adaptive self-attention mechanism. Moreover, we present an attention-guided supervised learning module for balancing the contributions of multi-phase CT images to prediction and a domain knowledge self-supervision module for enhancing the fusion between domain knowledge and images, thereby further improving predictive performance. Finally, we provide the interpretability of the DSViT decision-making. Experiments on our multi-phase data demonstrate that DSViTs surpass the existing models across multiple performance metrics and provide the decision-making interpretability. Additional validation on a publicly available dataset underscores the generalizability of DSViT. The proposed DSViT can significantly improve the performance and interpretability of ER prediction, thereby fortifying the trustworthiness of artificial intelligence tool for HCC ER prediction in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天应助xinxin采纳,获得10
1秒前
2秒前
2秒前
3秒前
南枳完成签到 ,获得积分10
5秒前
xixi关注了科研通微信公众号
5秒前
7秒前
Cindy发布了新的文献求助10
7秒前
7秒前
jinya完成签到,获得积分10
7秒前
8秒前
ysx完成签到 ,获得积分10
8秒前
9秒前
科研摆渡人完成签到,获得积分10
10秒前
10秒前
Jara发布了新的文献求助10
11秒前
zjh完成签到,获得积分10
11秒前
12秒前
syl完成签到 ,获得积分10
14秒前
ppc完成签到,获得积分10
14秒前
李爱国应助笨笨的初翠采纳,获得10
14秒前
an发布了新的文献求助10
14秒前
14秒前
wwwweer发布了新的文献求助10
15秒前
Cindy完成签到,获得积分10
16秒前
16秒前
17秒前
Cain完成签到 ,获得积分10
19秒前
慕青应助Danielle采纳,获得10
20秒前
孟辰凡发布了新的文献求助10
20秒前
20秒前
深情安青应助handsomeboy采纳,获得10
21秒前
风清扬应助月亮moon采纳,获得20
21秒前
隐形秋柳发布了新的文献求助10
24秒前
打打应助Azhou采纳,获得20
26秒前
Stone完成签到,获得积分10
27秒前
科研通AI2S应助an采纳,获得10
28秒前
纳米仁完成签到,获得积分20
29秒前
Akim应助nnnnn采纳,获得10
29秒前
蓝天应助香香香采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5837039
求助须知:如何正确求助?哪些是违规求助? 6118520
关于积分的说明 15596930
捐赠科研通 4955161
什么是DOI,文献DOI怎么找? 2670927
邀请新用户注册赠送积分活动 1616163
关于科研通互助平台的介绍 1571264