A knowledge-enhanced interpretable network for early recurrence prediction of hepatocellular carcinoma via multi-phase CT imaging

可解释性 机器学习 概化理论 领域知识 人工智能 计算机科学 深度学习 数据挖掘 模式识别(心理学) 数学 统计
作者
Yu Gao,Xue Yang,Hongjun Li,Da‐Wei Ding
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:189: 105509-105509 被引量:2
标识
DOI:10.1016/j.ijmedinf.2024.105509
摘要

Predicting early recurrence (ER) of hepatocellular carcinoma (HCC) accurately can guide treatment decisions and further enhance survival. Computed tomography (CT) imaging, analyzed by deep learning (DL) models combining domain knowledge, has been employed for the prediction. However, these DL models utilized late fusion, restricting the interaction between domain knowledge and images during feature extraction, thereby limiting the prediction performance and compromising decision-making interpretability. We propose a novel Vision Transformer (ViT)-based DL network, referred to as Dual-Style ViT (DSViT), to augment the interaction between domain knowledge and images and the effective fusion among multi-phase CT images for improving both predictive performance and interpretability. We apply the DSViT to develop pre-/post-operative models for predicting ER. Within DSViT, to balance the utilization between domain knowledge and images within DSViT, we propose an adaptive self-attention mechanism. Moreover, we present an attention-guided supervised learning module for balancing the contributions of multi-phase CT images to prediction and a domain knowledge self-supervision module for enhancing the fusion between domain knowledge and images, thereby further improving predictive performance. Finally, we provide the interpretability of the DSViT decision-making. Experiments on our multi-phase data demonstrate that DSViTs surpass the existing models across multiple performance metrics and provide the decision-making interpretability. Additional validation on a publicly available dataset underscores the generalizability of DSViT. The proposed DSViT can significantly improve the performance and interpretability of ER prediction, thereby fortifying the trustworthiness of artificial intelligence tool for HCC ER prediction in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
喵喵完成签到,获得积分10
5秒前
小全发布了新的文献求助30
7秒前
dud发布了新的文献求助10
8秒前
9秒前
紫霃完成签到,获得积分10
9秒前
11秒前
科研通AI5应助nihaoxjm采纳,获得10
14秒前
迷路发布了新的文献求助10
15秒前
24秒前
霹雳枕头发布了新的文献求助10
25秒前
28秒前
SciGPT应助wxinli采纳,获得10
30秒前
白云发布了新的文献求助10
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
HEAUBOOK应助科研通管家采纳,获得10
33秒前
所所应助科研通管家采纳,获得50
33秒前
bc应助科研通管家采纳,获得30
33秒前
33秒前
充电宝应助科研通管家采纳,获得10
33秒前
bc应助科研通管家采纳,获得30
33秒前
边边完成签到 ,获得积分10
37秒前
Ava应助秋秋秋采纳,获得10
38秒前
ni发布了新的文献求助10
38秒前
科研通AI5应助纯真的晓啸采纳,获得10
39秒前
39秒前
大鲨鱼完成签到 ,获得积分10
40秒前
46秒前
kyt完成签到,获得积分10
48秒前
50秒前
Bystander完成签到 ,获得积分10
50秒前
anitachiu1104发布了新的文献求助10
51秒前
Ava应助奥利奥饼采纳,获得10
51秒前
dud完成签到,获得积分10
53秒前
53秒前
ding应助我是李白鹤采纳,获得10
54秒前
完美世界应助TGR采纳,获得10
55秒前
科研通AI2S应助Krositon采纳,获得10
56秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782058
求助须知:如何正确求助?哪些是违规求助? 3327527
关于积分的说明 10232030
捐赠科研通 3042501
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799539
科研通“疑难数据库(出版商)”最低求助积分说明 758825