发光
小提琴手
镉
纳米技术
多态性(计算机科学)
镉暴露
发光测量
材料科学
光化学
化学
光电子学
生物化学
基因
基因型
冶金
作者
Yanting Yang,Guorong Wang,Kangjing Li,Wen Yang,Jing Zhang,Jian Zhang,Shi-Li Li,Xian‐Ming Zhang
标识
DOI:10.1016/j.cclet.2024.110123
摘要
In our work, polymorphism strategy has been successfully applied to tune up chromism and luminescence properties of viologen-based materials. Two polymorphs of viologen-based complexes of α-CdBr2(PHSQ)2(H2O)2 (1) and β-CdBr2(PHSQ)2(H2O)2 (2) (PHSQ = N-(4-sulfophenyl)-4,4′-bipyridinium) were synthesized by changing the solvent. They can both respond to UV light and electricity in the manner of chromism visible to the naked eye and the coloration states have good reversibility, through which an inkless erasable printing model has been established. But the coloration contrast of 1 is higher compared to 2. Meanwhile, they both exhibit photoluminescence properties and the intensity of 1 is twice that of 2, which is accompanied by photoquenching upon continuous UV light irradiation. The only divergence of disordered/ordered O atoms in the two crystalline compounds leads to significantly different chromic and luminescent properties. Further explorations simultaneously demonstrate that the different chromic performance between 1 and 2 should attribute to the alteration of stimulus-induced (light/ electricity) electron transfer channels caused by the ordered/disordered O atoms in the complexes, which is achieved through C-H···O and O-H···O interactions to change crystal arrangement and structural rigidity, thus affect luminescent properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI