已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deciphering the tumor immune microenvironment from a multidimensional omics perspective: insight into next-generation CAR-T cell immunotherapy and beyond

免疫疗法 嵌合抗原受体 肿瘤微环境 免疫系统 癌症免疫疗法 生物 组学 机制(生物学) T细胞 癌症 计算生物学 癌症研究 免疫学 生物信息学 哲学 遗传学 认识论
作者
Zhaokai Zhou,Jiahui Wang,Jiaojiao Wang,Shuai Yang,Ruizhi Wang,Ge Zhang,Zhengrui Li,Run Shi,Zhan Wang,Qiong Lu
出处
期刊:Molecular Cancer [BioMed Central]
卷期号:23 (1) 被引量:16
标识
DOI:10.1186/s12943-024-02047-2
摘要

Abstract Tumor immune microenvironment (TIME) consists of intra-tumor immunological components and plays a significant role in tumor initiation, progression, metastasis, and response to therapy. Chimeric antigen receptor (CAR)-T cell immunotherapy has revolutionized the cancer treatment paradigm. Although CAR-T cell immunotherapy has emerged as a successful treatment for hematologic malignancies, it remains a conundrum for solid tumors. The heterogeneity of TIME is responsible for poor outcomes in CAR-T cell immunotherapy against solid tumors. The advancement of highly sophisticated technology enhances our exploration in TIME from a multi-omics perspective. In the era of machine learning, multi-omics studies could reveal the characteristics of TIME and its immune resistance mechanism. Therefore, the clinical efficacy of CAR-T cell immunotherapy in solid tumors could be further improved with strategies that target unfavorable conditions in TIME. Herein, this review seeks to investigate the factors influencing TIME formation and propose strategies for improving the effectiveness of CAR-T cell immunotherapy through a multi-omics perspective, with the ultimate goal of developing personalized therapeutic approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙燕应助小医学生采纳,获得10
1秒前
Vera123完成签到,获得积分10
2秒前
凡仔发布了新的文献求助10
4秒前
6秒前
ff567发布了新的文献求助10
13秒前
15秒前
brisk应助半个饼采纳,获得10
17秒前
18秒前
我是老大应助sci大户采纳,获得10
20秒前
xiaomeng完成签到 ,获得积分10
20秒前
21秒前
22秒前
科研通AI5应助一杆长空采纳,获得30
23秒前
传奇3应助快乐无极限采纳,获得10
27秒前
27秒前
机灵柚子应助hello采纳,获得30
29秒前
29秒前
wanci应助vtfangfangfang采纳,获得10
32秒前
上上谦完成签到,获得积分10
33秒前
yupeijin发布了新的文献求助10
35秒前
传奇3应助儒雅沛凝采纳,获得10
37秒前
franklylyly完成签到,获得积分10
38秒前
凶狠的煎饼完成签到 ,获得积分10
38秒前
43秒前
chun完成签到,获得积分10
44秒前
45秒前
听话的富完成签到,获得积分20
45秒前
乔呆驼发布了新的文献求助10
46秒前
轮回1奇点完成签到,获得积分10
48秒前
一杆长空发布了新的文献求助30
51秒前
51秒前
51秒前
我是老大应助文静煜城采纳,获得10
51秒前
pzh完成签到 ,获得积分10
58秒前
孙燕应助Noob_saibot采纳,获得10
59秒前
乐乐应助乔呆驼采纳,获得10
1分钟前
无花果应助霸气的金鱼采纳,获得10
1分钟前
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833541
求助须知:如何正确求助?哪些是违规求助? 3376064
关于积分的说明 10491471
捐赠科研通 3095564
什么是DOI,文献DOI怎么找? 1704474
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771758