Automatic evaluation of Nail Psoriasis Severity Index using deep learning algorithm

医学 银屑病 组内相关 皮肤病科 钉子(扣件) 人工智能 计算机科学 临床心理学 心理测量学 冶金 材料科学
作者
Kyungho Paik,Bo Ri Kim,Sang Woong Youn
出处
期刊:Journal of Dermatology [Wiley]
被引量:2
标识
DOI:10.1111/1346-8138.17313
摘要

Abstract Nail psoriasis is a chronic condition characterized by nail dystrophy affecting the nail matrix and bed. The severity of nail psoriasis is commonly assessed using the Nail Psoriasis Severity Index (NAPSI), which evaluates the characteristics and extent of nail involvement. Although the NAPSI is numeric, reproducible, and simple, the assessment process is time‐consuming and often challenging to use in real‐world clinical settings. To overcome the time‐consuming nature of NAPSI assessment, we aimed to develop a deep learning algorithm that can rapidly and reliably evaluate NAPSI, thereby providing numerous clinical and research advantages. We developed a dataset consisting of 7054 single fingernail images cropped from images of the dorsum of the hands of 634 patients with psoriasis. We annotated the eight features of the NAPSI in a single nail using bounding boxes and trained the YOLOv7‐based deep learning algorithm using this annotation. The performance of the deep learning algorithm (DLA) was evaluated by comparing the NAPSI estimated using the DLA with the ground truth of the test dataset. The NAPSI evaluated using the DLA differed by 2 points from the ground truth in 98.6% of the images. The accuracy and mean absolute error of the model were 67.6% and 0.449, respectively. The intraclass correlation coefficient was 0.876, indicating good agreement. Our results showed that the DLA can rapidly and accurately evaluate the NAPSI. The rapid and accurate NAPSI assessment by the DLA is not only applicable in clinical settings, but also provides research advantages by enabling rapid NAPSI evaluations of previously collected nail images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助必中采纳,获得10
1秒前
2秒前
3秒前
3秒前
拟好啊完成签到,获得积分10
3秒前
朝文奕发布了新的文献求助10
4秒前
6秒前
李健的粉丝团团长应助lzx采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得30
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
dong应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
dong应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得20
8秒前
ding应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
思源应助luo采纳,获得10
8秒前
田格本发布了新的文献求助10
9秒前
9秒前
good完成签到 ,获得积分10
10秒前
并肩于雪山之巅完成签到 ,获得积分10
11秒前
平常的小蝴蝶完成签到,获得积分10
11秒前
12秒前
hhhi发布了新的文献求助20
12秒前
12秒前
猪猪仔完成签到,获得积分10
13秒前
朝文奕完成签到,获得积分10
14秒前
lll发布了新的文献求助10
15秒前
李爱国应助爱吃肉的猪采纳,获得10
16秒前
16秒前
feng_qi001发布了新的文献求助10
17秒前
成瑶发布了新的文献求助10
18秒前
19秒前
19秒前
21秒前
都选C发布了新的文献求助10
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3984825
求助须知:如何正确求助?哪些是违规求助? 3528013
关于积分的说明 11238787
捐赠科研通 3266324
什么是DOI,文献DOI怎么找? 1803305
邀请新用户注册赠送积分活动 880872
科研通“疑难数据库(出版商)”最低求助积分说明 808411