Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis

暖通空调 阿什拉1.90 断层(地质) 适应性 学习迁移 计算机科学 人工神经网络 冷水机组 水准点(测量) 卷积神经网络 人工智能 可靠性工程 工程类 机器学习 空调 地理 制冷剂 气体压缩机 地震学 气象学 大地测量学 地质学 物理 生物 机械工程 生态学
作者
Guannan Li,Liang Chen,Jiangyan Liu,Xi Fang
出处
期刊:Energy [Elsevier BV]
卷期号:263: 125943-125943 被引量:36
标识
DOI:10.1016/j.energy.2022.125943
摘要

Timely and accurate fault diagnosis (FD) in building energy systems (BESs) can promote energy efficiency and sustainable development. Especially the heating, ventilating, and air-conditioning (HVAC) systems are diverse and operate under complex and variable operation conditions. System and operation differences lead to great differences in operational data which causes poor adaptability of data-driven FD models that are developed using data from a single HVAC system or limited operation condition. To improve diagnostic performance across different HVAC systems and operation conditions, this study proposes high-adaptability FD models using three deep transfer learning (DTL) strategies including network-based fine-tuning (FT), mapping-based domain-adaptive neural network (DaNN) and adversarial-based domain adversarial neural network (DANN). The effectiveness of DTL-based FD is validated by fault datasets of two typical BESs: one is a 703-kW screw chiller while the other is the 316-kW centrifugal chiller from ASHRAE RP-1043. Two types of TL scenarios (cross-system and cross-operation-condition fault diagnosis) are set up consisting of eight TL tasks. For DTL strategies, both FD performance and transferability are evaluated using metrics like accuracy and accuracy improvement degree (AID). Results indicate that FT obtains 93% FD accuracy averagely for all tasks of the two TL scenarios considered, which is an average 55% AID compared with the non-transfer benchmark model convolutional neural network (CNN). Further, the impacts of source and target data volumes, and TL tasks are analyzed. For cross-operation-condition scenario, DTL-based FD accuracy grows with the increase of target data volume. For cross-system scenario, FT still show high FD performance with less training data. The reason why FT outperforms DANN and DaNN is explained by visualizing classification scatterplots of the last NN layers. Practical application issues of the DTL-based FD strategy for building energy systems are discussed at last.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caozhi发布了新的文献求助10
1秒前
小雨完成签到,获得积分10
2秒前
胡燕完成签到 ,获得积分10
2秒前
2秒前
3秒前
秋山澪关注了科研通微信公众号
3秒前
lailailai发布了新的文献求助10
4秒前
小羊闲庭信步完成签到,获得积分10
5秒前
彪壮的美女完成签到,获得积分10
5秒前
5秒前
6秒前
longlong发布了新的文献求助10
6秒前
homer完成签到,获得积分10
6秒前
程南完成签到,获得积分10
7秒前
ikun发布了新的文献求助10
7秒前
CipherSage应助猩心采纳,获得30
8秒前
张振宇完成签到 ,获得积分10
9秒前
针不戳发布了新的文献求助10
10秒前
阿盛完成签到,获得积分10
10秒前
YOLO完成签到 ,获得积分10
12秒前
153发布了新的文献求助10
12秒前
xmy完成签到,获得积分10
12秒前
水月中辉完成签到,获得积分10
13秒前
demo完成签到,获得积分10
14秒前
14秒前
ikun完成签到,获得积分10
14秒前
那种完成签到,获得积分10
15秒前
16秒前
16秒前
ym完成签到,获得积分10
17秒前
高灵雨完成签到,获得积分10
17秒前
longlong完成签到,获得积分10
17秒前
曲终人散完成签到,获得积分10
18秒前
18秒前
答题不卡完成签到,获得积分20
19秒前
思源应助cistronic采纳,获得10
19秒前
YH发布了新的文献求助10
20秒前
是小明啊应助木偶采纳,获得10
21秒前
彭于晏应助木偶采纳,获得10
21秒前
captainHc发布了新的文献求助10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798654
求助须知:如何正确求助?哪些是违规求助? 3344293
关于积分的说明 10319554
捐赠科研通 3060883
什么是DOI,文献DOI怎么找? 1679835
邀请新用户注册赠送积分活动 806778
科研通“疑难数据库(出版商)”最低求助积分说明 763386