Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential-Based Molecular Dynamics

化学 氧化还原 溶剂化 电解质 水溶液 化学物理 分子 流动电池 计算化学 无机化学 物理化学 有机化学 电极
作者
Feng Wang,Zebing Ma,Jun Cheng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (21): 14566-14575 被引量:7
标识
DOI:10.1021/jacs.4c01221
摘要

Due to the increased concern about energy and environmental issues, significant attention has been paid to the development of large-scale energy storage devices to facilitate the utilization of clean energy sources. The redox flow battery (RFB) is one of the most promising systems. Recently, the high cost of transition-metal complex-based RFB has promoted the development of aqueous RFBs with redox-active organic molecules. To expand the working voltage, computational chemistry has been applied to search for organic molecules with lower or higher redox potentials. However, redox potential computation based on implicit solvation models would be challenging due to difficulty in parametrization when considering the complex solvation of supporting electrolytes. Besides, although ab initio molecular dynamics (AIMD) describes the supporting electrolytes with the same level of electronic structure theory as the redox couple, the application is impeded by the high computation costs. Recently, machine learning molecular dynamics (MLMD) has been illustrated to accelerate AIMD by several orders of magnitude without sacrificing the accuracy. It has been established that redox potentials can be computed by MLMD with two separated machine learning potentials (MLPs) for reactant and product states, which is redundant and inefficient. In this work, an automated workflow is developed to construct a universal MLP for both states, which can compute the redox potentials or acidity constants of redox-active organic molecules more efficiently. Furthermore, the predicted redox potentials can be evaluated at the hybrid functional level with much lower costs, which would facilitate the design of aqueous organic RFBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄的小翠完成签到 ,获得积分10
刚刚
飞星完成签到,获得积分10
刚刚
charon完成签到,获得积分20
刚刚
cdercder应助wen采纳,获得10
1秒前
思源应助吃货采纳,获得10
1秒前
斯文败类应助微笑冥幽采纳,获得10
1秒前
Alicyclobacillus完成签到,获得积分10
1秒前
1秒前
微微完成签到,获得积分10
2秒前
ifast发布了新的文献求助10
2秒前
SciGPT应助平淡南松采纳,获得10
3秒前
4秒前
4秒前
科研通AI5应助charon采纳,获得10
4秒前
义气的咖啡豆完成签到,获得积分10
5秒前
高序完成签到,获得积分10
5秒前
嗯哼发布了新的文献求助10
5秒前
6秒前
YellowStar完成签到,获得积分10
6秒前
6秒前
隐形曼青应助碧蓝的以彤采纳,获得10
7秒前
7秒前
庄彧完成签到 ,获得积分10
7秒前
8秒前
8秒前
阿里巴巴完成签到,获得积分10
8秒前
倩Q完成签到,获得积分10
8秒前
Q0完成签到,获得积分10
9秒前
小科完成签到,获得积分10
9秒前
咯噔完成签到,获得积分10
9秒前
liii发布了新的文献求助10
9秒前
ayxa完成签到,获得积分10
10秒前
11秒前
11秒前
脑洞疼应助微微采纳,获得10
11秒前
12秒前
12秒前
SF发布了新的文献求助10
12秒前
sht完成签到,获得积分10
13秒前
今后应助燕子采纳,获得20
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811949
求助须知:如何正确求助?哪些是违规求助? 3356363
关于积分的说明 10381521
捐赠科研通 3073459
什么是DOI,文献DOI怎么找? 1688321
邀请新用户注册赠送积分活动 811941
科研通“疑难数据库(出版商)”最低求助积分说明 766933