已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

C3TB-YOLOv5: integrated YOLOv5 with transformer for object detection in high-resolution remote sensing images

计算机视觉 遥感 计算机科学 人工智能 变压器 高分辨率 地理 工程类 电气工程 电压
作者
Qinggang Wu,Yang Li,Wei Huang,Qiqiang Chen,Yonglei Wu
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (8): 2622-2650 被引量:3
标识
DOI:10.1080/01431161.2024.2329528
摘要

In the realm of object detection from high-resolution remote sensing images (HRRSIs), the existing YOLOv5 methods encounter several challenges, including dense object arrangements, small object sizes, and complex backgrounds. To tackle these challenges, we propose a novel approach called C3TB-YOLOv5, which combines traditional YOLOv5 with the Transformer model to detect objects in HRRSIs. Unlike conventional YOLOv5 methods that primarily focus on capturing local information from remote sensing scenes, our C3TB-YOLOv5 method incorporates global information through the introduction of a new C3TB module. This module, based on the Transformer multi-head attention mechanism (AM), consists of two branches that extract local and global information from feature maps. By integrating these branches and establishing long-range relationships, our method successfully detects densely arranged small objects in HRRSIs. Furthermore, to improve the accuracy of tiny object detection, a novel detection head has been developed to effectively utilize the unused C3 module, thereby preventing the loss of fine-grained textures and positional features. In addition, we integrate an enhanced SimAM, namely Sim-GMP, into the model to adjust the focus across varying regions, effectively distinguishing the features of interested objects from complex backgrounds. Finally, to address the problem of sample imbalance in remote sensing object detection, the most recent Wise-IoU v3 loss function is employed to improve the accuracy of anchor box predictions for objects. To maintain a high object detection speed, the most critical C3 modules are substituted with the proposed C3TB module for the purpose of striking a good balance between object detection accuracy and model lightweight. Extensive experiments conducted on two remote sensing datasets of NWPU VHR-10 and VisDrone 2019 demonstrates that our method achieves superior object detection performance than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pp0118完成签到 ,获得积分10
2秒前
qqq完成签到,获得积分20
2秒前
搞笑煎蛋完成签到 ,获得积分10
2秒前
雪白砖家发布了新的文献求助10
3秒前
李健的小迷弟应助qqq采纳,获得10
9秒前
9秒前
12秒前
脑洞疼应助完美芒果采纳,获得30
13秒前
wanna完成签到,获得积分10
16秒前
17秒前
22秒前
可靠的雪青完成签到 ,获得积分10
22秒前
23秒前
24秒前
25秒前
25秒前
虞美人发布了新的文献求助10
27秒前
Xiaoxiao应助yeyongchang_hit采纳,获得10
29秒前
awww发布了新的文献求助10
29秒前
qqq发布了新的文献求助10
30秒前
完美芒果发布了新的文献求助30
31秒前
31秒前
31秒前
科研通AI5应助默默的鬼神采纳,获得10
32秒前
852应助家名采纳,获得10
33秒前
34秒前
隐形曼青应助科研通管家采纳,获得10
35秒前
共享精神应助科研通管家采纳,获得10
35秒前
隐形曼青应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
CipherSage应助科研通管家采纳,获得10
35秒前
熊大发布了新的文献求助10
37秒前
岳小龙发布了新的文献求助30
37秒前
CC努力搞科研完成签到 ,获得积分10
38秒前
郑总完成签到 ,获得积分10
39秒前
清爽的傲易完成签到 ,获得积分10
41秒前
Faith完成签到,获得积分10
43秒前
田様应助awww采纳,获得10
46秒前
Owen应助唐飒采纳,获得10
50秒前
52秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3822728
求助须知:如何正确求助?哪些是违规求助? 3365284
关于积分的说明 10434491
捐赠科研通 3084224
什么是DOI,文献DOI怎么找? 1696612
邀请新用户注册赠送积分活动 815965
科研通“疑难数据库(出版商)”最低求助积分说明 769325