C3TB-YOLOv5: integrated YOLOv5 with transformer for object detection in high-resolution remote sensing images

计算机视觉 遥感 计算机科学 人工智能 变压器 高分辨率 地理 工程类 电气工程 电压
作者
Qinggang Wu,Yang Li,Wei Huang,Qiqiang Chen,Yonglei Wu
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (8): 2622-2650 被引量:14
标识
DOI:10.1080/01431161.2024.2329528
摘要

In the realm of object detection from high-resolution remote sensing images (HRRSIs), the existing YOLOv5 methods encounter several challenges, including dense object arrangements, small object sizes, and complex backgrounds. To tackle these challenges, we propose a novel approach called C3TB-YOLOv5, which combines traditional YOLOv5 with the Transformer model to detect objects in HRRSIs. Unlike conventional YOLOv5 methods that primarily focus on capturing local information from remote sensing scenes, our C3TB-YOLOv5 method incorporates global information through the introduction of a new C3TB module. This module, based on the Transformer multi-head attention mechanism (AM), consists of two branches that extract local and global information from feature maps. By integrating these branches and establishing long-range relationships, our method successfully detects densely arranged small objects in HRRSIs. Furthermore, to improve the accuracy of tiny object detection, a novel detection head has been developed to effectively utilize the unused C3 module, thereby preventing the loss of fine-grained textures and positional features. In addition, we integrate an enhanced SimAM, namely Sim-GMP, into the model to adjust the focus across varying regions, effectively distinguishing the features of interested objects from complex backgrounds. Finally, to address the problem of sample imbalance in remote sensing object detection, the most recent Wise-IoU v3 loss function is employed to improve the accuracy of anchor box predictions for objects. To maintain a high object detection speed, the most critical C3 modules are substituted with the proposed C3TB module for the purpose of striking a good balance between object detection accuracy and model lightweight. Extensive experiments conducted on two remote sensing datasets of NWPU VHR-10 and VisDrone 2019 demonstrates that our method achieves superior object detection performance than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
zyy完成签到,获得积分10
刚刚
min发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
善学以致用应助西洲采纳,获得10
3秒前
3秒前
完美世界应助露亮采纳,获得10
4秒前
5秒前
5秒前
LL完成签到,获得积分10
5秒前
7秒前
RUI1128完成签到,获得积分20
7秒前
杨立方完成签到,获得积分10
7秒前
香蕉觅云应助Maxw采纳,获得10
7秒前
112233cc发布了新的文献求助10
7秒前
7秒前
8秒前
Shirley发布了新的文献求助10
9秒前
沉默的星月完成签到,获得积分10
9秒前
落尘完成签到 ,获得积分10
9秒前
9秒前
xuan发布了新的文献求助10
10秒前
听听发布了新的文献求助10
10秒前
10秒前
11秒前
222发布了新的文献求助10
11秒前
11秒前
称心语风完成签到,获得积分10
12秒前
科研通AI6应助lasak采纳,获得10
12秒前
简单三问发布了新的文献求助10
12秒前
12秒前
小二郎应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得30
13秒前
所所应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
快乐零零屋完成签到,获得积分10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500220
求助须知:如何正确求助?哪些是违规求助? 4596729
关于积分的说明 14456270
捐赠科研通 4530059
什么是DOI,文献DOI怎么找? 2482486
邀请新用户注册赠送积分活动 1466282
关于科研通互助平台的介绍 1439007