Intelligent vegetable freshness monitoring system developed by integrating eco-friendly fluorescent sensor arrays with deep convolutional neural networks

食物腐败 菠菜 环境科学 卷积神经网络 传感器阵列 食品科学 废物管理 计算机科学 化学 工程类 人工智能 机器学习 生物 遗传学 生物化学 细菌
作者
Dayuan Wang,Min Zhang,Qibing Zhu,Benu Adhikari
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:488: 150739-150739 被引量:38
标识
DOI:10.1016/j.cej.2024.150739
摘要

Given the perishable and seasonal nature of vegetables, monitoring their freshness is essential to ensure food safety and reduce waste. Currently, there are limited packaging systems for fresh vegetables that incorporate intelligent freshness monitoring labels. Herein, we report on the development and application of a 3 × 6 fluorescent sensor array that exhibits pH-sensitive properties, utilizing curcumin, puerarin, and fisetin. During spoilage, yardlong beans and spinach, which had high protein content, produced alkaline volatile organic compounds (VOCs), whereas sweet corn, rich in sugar, emitted acidic VOCs. The fluorescent sensor array, integrated with deep convolutional neural network (DCNN), enabled non-destructive, real-time, and accurate classification of the freshness of the aforementioned three vegetables by detecting the acidity or alkalinity of their VOCs. The trained ResNet50 DCNN model achieved an overall accuracy of 96.21 % in classifying the freshness of the aforementioned vegetables in the testing set, with specific accuracies of 98.58 % for yardlong beans, 97.15 % for spinach, and 92.89 % for sweet corn, respectively. This intelligent freshness monitoring platform is adaptable for monitoring and classifying the freshness of a wide range of agricultural and food products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
畅快心情完成签到 ,获得积分10
6秒前
10秒前
14秒前
爱学习的毛完成签到,获得积分10
15秒前
tangke发布了新的文献求助10
16秒前
hutao完成签到,获得积分10
19秒前
小蘑菇应助rover采纳,获得10
20秒前
special完成签到 ,获得积分10
23秒前
24秒前
欣欣完成签到,获得积分10
25秒前
liuhuayaxi发布了新的文献求助10
27秒前
等待凝海完成签到,获得积分10
33秒前
38秒前
研都不研了完成签到 ,获得积分10
38秒前
kk完成签到 ,获得积分10
39秒前
芋头完成签到 ,获得积分10
40秒前
smm发布了新的文献求助10
43秒前
43秒前
徐涵完成签到 ,获得积分10
45秒前
51秒前
51秒前
51秒前
51秒前
51秒前
51秒前
51秒前
51秒前
51秒前
51秒前
52秒前
52秒前
52秒前
52秒前
思源应助科研通管家采纳,获得10
52秒前
52秒前
汉堡包应助科研通管家采纳,获得10
52秒前
打打应助科研通管家采纳,获得10
52秒前
乐乐应助科研通管家采纳,获得10
52秒前
XPX完成签到 ,获得积分10
55秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847423
求助须知:如何正确求助?哪些是违规求助? 6225776
关于积分的说明 15620117
捐赠科研通 4964073
什么是DOI,文献DOI怎么找? 2676366
邀请新用户注册赠送积分活动 1620962
关于科研通互助平台的介绍 1576895