Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging

医学 恶性肿瘤 腮腺 放射科 头颈部 核医学 外科 病理
作者
Xue‐Meng Shen,Liang Mao,Zhiyi Yang,Zi‐Kang Chai,Ting‐Guan Sun,Yongchao Xu,Zhi‐Jun Sun
出处
期刊:Oral Diseases [Wiley]
卷期号:29 (8): 3325-3336 被引量:12
标识
DOI:10.1111/odi.14474
摘要

Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning-based method for preoperative stratification of PGTs.Using the 3D DenseNet-121 architecture and a dataset consisting of 117 volumetric arterial-phase contrast-enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model-assisted performance of junior clinicians.The model finally reached the sensitivity, specificity, PPV, NPV, F1-score of 0.955 (95% CI 0.751-0.998), 0.667 (95% CI 0.241-0.940), 0.913 (95% CI 0.705-0.985), 0.800 (95% CI 0.299-0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1-score in differentiating benign from malignant PGTs when unassisted and model-assisted performance of junior clinicians were compared.Our results provide evidence that deep learning-based method may offer assistance for PGT's binary distinction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
jiajia完成签到,获得积分10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
ADGAI完成签到,获得积分10
3秒前
3秒前
孤独问凝发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
脑洞疼应助joe采纳,获得10
4秒前
NMR发布了新的文献求助20
5秒前
上官若男应助llflame采纳,获得10
5秒前
5秒前
海涛完成签到,获得积分10
5秒前
5秒前
jiajia发布了新的文献求助10
6秒前
传奇3应助项初蝶采纳,获得10
6秒前
7秒前
花晨月夕发布了新的文献求助30
8秒前
简单而复杂完成签到,获得积分10
8秒前
欣喜访文发布了新的文献求助10
9秒前
lhd完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
proud发布了新的文献求助10
11秒前
Hilda007应助就这样吧采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5440407
求助须知:如何正确求助?哪些是违规求助? 4551286
关于积分的说明 14229577
捐赠科研通 4472435
什么是DOI,文献DOI怎么找? 2450747
邀请新用户注册赠送积分活动 1441838
关于科研通互助平台的介绍 1418067