卷积神经网络
计算机科学
水准点(测量)
块(置换群论)
人工智能
频道(广播)
模式识别(心理学)
采样(信号处理)
航程(航空)
图像(数学)
上下文图像分类
计算机视觉
地图学
数学
电信
工程类
地理
滤波器(信号处理)
几何学
航空航天工程
作者
Yuanzhen Shuai,Qiao Yuan,Shanshan Zhao
标识
DOI:10.1109/igarss46834.2022.9884780
摘要
This paper proposes a novel model for remote sensing image classification based on CBAM-CNN (Convolutional Block Attention Module-Convolutional Neural Network). CBAM-CNN is a well-known and effective model. However, it is limited when it comes to high-level features due to its shared spatial attention mechanism and narrow sampling range in squeeze-and-excitation module (SEM). We disentangle the shared attention to channel-independent spatial attention and expand the sampling range of SEM. The results show that the proposed approach outperforms other CNN-based models on two large-scale benchmark datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI