TRNR: Task-Driven Image Rain and Noise Removal With a Few Images Based on Patch Analysis

计算机科学 噪音(视频) 人工智能 图像处理 图像(数学) 任务(项目管理) 图像复原 计算机视觉 工程类 系统工程
作者
Wu Ran,Bohong Yang,Peirong Ma,Hong Lu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 721-736 被引量:11
标识
DOI:10.1109/tip.2022.3232943
摘要

The recent success of learning-based image rain and noise removal can be attributed primarily to well-designed neural network architectures and large labeled datasets. However, we discover that current image rain and noise removal methods result in low utilization of images. To alleviate the reliance of deep models on large labeled datasets, we propose the task-driven image rain and noise removal (TRNR) based on a patch analysis strategy. The patch analysis strategy samples image patches with various spatial and statistical properties for training and can increase image utilization. Furthermore, the patch analysis strategy encourages us to introduce the N-frequency-K-shot learning task for the task-driven approach TRNR. TRNR allows neural networks to learn from numerous N-frequency-K-shot learning tasks, rather than from a large amount of data. To verify the effectiveness of TRNR, we build a Multi-Scale Residual Network (MSResNet) for both image rain removal and Gaussian noise removal. Specifically, we train MSResNet for image rain removal and noise removal with a few images (for example, 20.0% train-set of Rain100H). Experimental results demonstrate that TRNR enables MSResNet to learn more effectively when data is scarce. TRNR has also been shown in experiments to improve the performance of existing methods. Furthermore, MSResNet trained with a few images using TRNR outperforms most recent deep learning methods trained data-driven on large labeled datasets. These experimental results have confirmed the effectiveness and superiority of the proposed TRNR. The source code is available on https://github.com/Schizophreni/MSResNet-TRNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坦率行云发布了新的文献求助10
刚刚
卜小卜发布了新的文献求助10
刚刚
刚刚
嘴嘴完成签到,获得积分10
刚刚
1秒前
cat_head发布了新的文献求助10
1秒前
感动归尘发布了新的文献求助10
2秒前
2秒前
2秒前
hha发布了新的文献求助10
2秒前
FashionBoy应助苏三三采纳,获得10
2秒前
ttly完成签到,获得积分10
3秒前
科研通AI6应助花椒泡茶采纳,获得10
3秒前
3秒前
能干亦玉完成签到,获得积分10
3秒前
zzz关注了科研通微信公众号
4秒前
wangyamei发布了新的文献求助10
4秒前
bzc229发布了新的文献求助10
4秒前
4秒前
HEL完成签到,获得积分10
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
5秒前
景行应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
执着谷兰应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
赘婿应助舒适香露采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
yoyo完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
科研通AI5应助RRhhh采纳,获得10
6秒前
执着谷兰应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
key应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4521692
求助须知:如何正确求助?哪些是违规求助? 3963605
关于积分的说明 12285035
捐赠科研通 3627159
什么是DOI,文献DOI怎么找? 1996112
邀请新用户注册赠送积分活动 1032618
科研通“疑难数据库(出版商)”最低求助积分说明 922584