Lightweight Single Shot Multi-Box Detector: A fabric defect detection algorithm incorporating parallel dilated convolution and dual channel attention

计算机科学 卷积(计算机科学) 探测器 算法 卷积神经网络 频道(广播) 特征(语言学) 特征提取 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 图像(数学) 电信 语言学 哲学 计算机网络
作者
Shuhan Liu,Limin Huang,Yingbao Zhao,Xiaojing Wu
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:94 (1-2): 209-224 被引量:9
标识
DOI:10.1177/00405175231202817
摘要

For the textile industry, fabric defect detection is an important part of production. In order to make the automatic fabric defect detection system used in production sites, this article proposes a lightweight algorithm Lightweight Single Shot Multi-Box Detector (LW-SSD) to address the issues of low detection accuracy, high computational complexity, and difficulty in deploying on hardware devices with limited computing power in fabric defect detection. Firstly, MobileNetv3 is introduced as the backbone network to reduce the number of model parameters. Secondly, in the feature fusion module, down-sampling stacking is used to fuse the feature maps processed by maximum pooling and regular 3 × 3 convolution, respectively, to enhance the generalization and small target feature extraction capability of the network. Then, the dilated convolution is incorporated into the Inceptionv3 to form a multi-branch parallel dilated convolution module, which can expand the receptive field of the feature layer and enhance the extraction of the target information. Finally, a dual-channel attention module is added, which adds the maximum pooling operation based on the efficient channel attention for deep convolutional neural networks (ECA) channel attention mechanism to highlight defect features and suppress background noise features. The experiments show that the accuracy of the system is improved while maintaining the faster detection speed. Among them, the LW-SSD algorithm has an accuracy improvement of 10.03% on the self-made dataset, a reduction of 58% in the number of model parameters compared to the Single Shot Multi-Box Detector (SSD) algorithm, and the detection speed reaches 48 frames per second.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魁梧的曼凡完成签到,获得积分10
刚刚
难寻发布了新的文献求助10
刚刚
烟花应助丰富的小甜瓜采纳,获得10
2秒前
啊呜发布了新的文献求助10
2秒前
3秒前
小蘑菇应助如意的尔冬采纳,获得10
3秒前
奋斗龙猫发布了新的文献求助10
3秒前
JPH1990发布了新的文献求助30
4秒前
artx001发布了新的文献求助10
6秒前
mage完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
liuhuo完成签到,获得积分20
7秒前
tsttst完成签到,获得积分10
8秒前
9秒前
拿云驳回了fnder应助
9秒前
HaojunWang完成签到 ,获得积分10
9秒前
10秒前
10秒前
yipyip完成签到,获得积分10
10秒前
10秒前
orixero应助难寻采纳,获得10
11秒前
从心随缘完成签到 ,获得积分10
11秒前
12秒前
Yuhong发布了新的文献求助10
12秒前
bob发布了新的文献求助10
13秒前
落寞丹萱完成签到,获得积分10
13秒前
冰魂应助fang采纳,获得10
13秒前
14秒前
Singularity应助bubble采纳,获得10
14秒前
mark完成签到,获得积分10
14秒前
firefly完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
Jasper应助Ldx采纳,获得10
15秒前
15秒前
豆豆发布了新的文献求助10
16秒前
chai发布了新的文献求助10
17秒前
17秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871099
求助须知:如何正确求助?哪些是违规求助? 3413235
关于积分的说明 10683580
捐赠科研通 3137659
什么是DOI,文献DOI怎么找? 1731135
邀请新用户注册赠送积分活动 834612
科研通“疑难数据库(出版商)”最低求助积分说明 781247