A comprehensive study on developing an intelligent framework for identification and quantitative evaluation of the bearing defect size

停工期 鉴定(生物学) 可靠性(半导体) 方位(导航) 可靠性工程 计算机科学 数据挖掘 工程类 人工智能 机器学习 功率(物理) 植物 物理 量子力学 生物
作者
Anil Kumar,Rajesh Kumar,Hesheng Tang,Jiawei Xiang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:242: 109768-109768 被引量:23
标识
DOI:10.1016/j.ress.2023.109768
摘要

An intelligent framework is necessary to detect and analyze bearing defects in rotating machinery to prevent unexpected downtime and achieve performance per Industry 4.0 standards. This study presents a framework to detect faults and precisely quantify their size. The framework triggers an AI model to identify the defect and another model for quantitative evaluation of defect size. After analyzing the various classification and regression models, it has been found that The k-nearest neighbor (KNN) algorithm is suggested as the most effective AI model for identifying bearing defects. The ensemble tree is the most effective AI model for defect quantification. The results showed that the proposed algorithm can estimate the defect width reasonably. The maximum error in estimating the inner race, outer race, and roller defect widths was 2.474%, 14.534%, and 5.517%, respectively. The AI model's capacity to identify bearing defects of different sizes, which were not included in the training dataset, was also tested. The test yielded successful results. By using this framework, industries can prevent unexpected downtime, reduce maintenance costs, and enhance the performance and reliability of rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧驭枫完成签到,获得积分10
刚刚
碧蓝毛豆完成签到 ,获得积分10
1秒前
1秒前
稳重发布了新的文献求助10
3秒前
3秒前
鹿依波完成签到,获得积分10
3秒前
李剑鸿发布了新的文献求助50
6秒前
NexusExplorer应助charllar采纳,获得10
6秒前
张张完成签到,获得积分20
9秒前
科研通AI2S应助liyiliyi117采纳,获得10
10秒前
10秒前
lab完成签到 ,获得积分0
10秒前
14秒前
ZhouYW应助激昂的南晴采纳,获得10
15秒前
15秒前
Jasper应助晴朗采纳,获得10
17秒前
17秒前
18秒前
立青完成签到 ,获得积分10
21秒前
小扇发布了新的文献求助10
21秒前
22秒前
23秒前
宁静的夏天完成签到,获得积分10
24秒前
丘比特应助gzf采纳,获得30
25秒前
25秒前
深情安青应助xinxin采纳,获得10
27秒前
27秒前
28秒前
28秒前
28秒前
Colo完成签到 ,获得积分10
29秒前
29秒前
沙不凡完成签到,获得积分20
31秒前
31秒前
有机分子笼完成签到,获得积分10
32秒前
签到发布了新的文献求助10
32秒前
YH给kento的求助进行了留言
34秒前
34秒前
34秒前
桐桐应助KKKK采纳,获得10
35秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807036
求助须知:如何正确求助?哪些是违规求助? 3351803
关于积分的说明 10355623
捐赠科研通 3067759
什么是DOI,文献DOI怎么找? 1684707
邀请新用户注册赠送积分活动 809899
科研通“疑难数据库(出版商)”最低求助积分说明 765734