Robust Perception Under Adverse Conditions for Autonomous Driving Based on Data Augmentation

恶劣天气 人工智能 感知 计算机科学 计算机视觉 视觉感受 深度学习 可视化 目标检测 模式识别(心理学) 生物 物理 气象学 神经科学
作者
Ziqiang Zheng,Yujie Cheng,Zhichao Xin,Zhibin Yu,Bing Zheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 13916-13929 被引量:1
标识
DOI:10.1109/tits.2023.3297318
摘要

Many existing advanced deep learning-based autonomous systems have recently been used for autonomous vehicles. In general, a deep learning-based visual perception system heavily relies on visual perception to recognize and localize dynamic interest objects (e.g., pedestrians and cars) and indicative traffic signs and lights to assist autonomous vehicles in maneuvering safely. However, the performance of existing object recognition algorithms could degrade significantly under some adverse and challenging scenarios including rainy, foggy, and rainy night conditions. The raindrops, light reflection, and low illumination pose a great challenge to robust object recognition. Thus, A robust and accurate autonomous driving system has attracted growing attention from the computer vision community. To achieve robust and accurate visual perception, we target to build effective and efficient augmentation and fusion techniques based on visual perception under various adverse conditions. The unpaired image-to-image (I2I) synthesis is integrated for visual perception enhancement and effective synthesis-based augmentation. Besides, we design a two-branch architecture to utilize the information from both the original image and the enhanced image synthesized by I2I. We comprehensively and hierarchically investigate the performance improvement and limitation of the proposed system based on visual recognition tasks and network backbones. An extensive experimental analysis of various adverse weather conditions is also included. The experimental results have demonstrated the proposed system could promote the ability of autonomous vehicles for robust and accurate perception under adverse weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
用户12306发布了新的文献求助10
1秒前
鳗鱼紫萱发布了新的文献求助10
2秒前
木耳完成签到,获得积分10
2秒前
2秒前
张秋雨发布了新的文献求助10
6秒前
7秒前
风趣的凝雁完成签到,获得积分10
8秒前
用户12306完成签到,获得积分10
10秒前
丘比特应助董菲音采纳,获得10
13秒前
JamesPei应助希格斯玻色子采纳,获得10
15秒前
关键词完成签到,获得积分10
15秒前
15秒前
科研通AI5应助杨怡羊采纳,获得10
18秒前
19秒前
22秒前
豆沙包小团子完成签到 ,获得积分10
22秒前
鳗鱼紫萱完成签到,获得积分10
23秒前
董菲音发布了新的文献求助10
24秒前
25秒前
yuaner发布了新的文献求助10
26秒前
晓布衣完成签到 ,获得积分10
27秒前
27秒前
28秒前
iNk应助yuaner采纳,获得20
29秒前
情怀应助等都到采纳,获得10
29秒前
大鱼儿发布了新的文献求助10
30秒前
江北发布了新的文献求助10
30秒前
nini完成签到,获得积分10
32秒前
33秒前
CodeCraft应助yuaner采纳,获得10
34秒前
随遇而安应助yuaner采纳,获得20
34秒前
大个应助yuaner采纳,获得10
34秒前
隐形曼青应助yuaner采纳,获得10
34秒前
搜集达人应助yuaner采纳,获得10
34秒前
烟花应助yuaner采纳,获得10
34秒前
ss应助yuaner采纳,获得10
34秒前
bkagyin应助yuaner采纳,获得10
35秒前
wanci应助yuaner采纳,获得10
35秒前
在水一方应助yuaner采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778910
求助须知:如何正确求助?哪些是违规求助? 3324505
关于积分的说明 10218641
捐赠科研通 3039496
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440