已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Study on waste tire pyrolysis product characteristics based on machine learning

热解 产品(数学) 废物管理 工艺工程 计算机科学 环境科学 制造工程 汽车工程 工程类 数学 几何学
作者
Jingwei Qi,Kaihong Zhang,Ming Hu,Xu Pengcheng,Taoli Huhe,Xiang Ling,Haoran Yuan,Yijie Wang,Yong Chen
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:11 (6): 111314-111314 被引量:13
标识
DOI:10.1016/j.jece.2023.111314
摘要

Tire pyrolysis is a highly complex thermochemical conversion process that transforms waste tires into high-value products such as pyrolysis oil, pyrolysis gas, and pyrolysis char. This process significantly mitigates the environmental issues caused by waste tires and reduces reliance on fossil resources. The physicochemical properties of tires and pyrolysis operation parameters have a significant impact on the yield of the three-phase products, thus affecting the industrial viability of tire pyrolysis to a large extent. Traditional prediction methods such as computational fluid dynamics and process simulation often fail to provide satisfactory results. However, data-driven machine learning (ML) models have demonstrated their ability to handle complex nonlinear problems and offer more reliable predictions of pyrolysis products yield. This study employed a collected database of tire pyrolysis to develop tire pyrolysis product prediction models based on five ML models. These models were further optimized using Particle Swarm Optimization (PSO), and their prediction performances were quantitatively evaluated to identify the optimal model. Shapley analysis and one-way partial dependence analysis were conducted to explore the impact of input features on the output responses. Furthermore, an industrial-grade software was developed for accurate prediction of tire pyrolysis three-phase products yield. The results revealed that Gaussian process regression (GPR) and random forest regression (RFR), both optimized with PSO, demonstrated impressive prediction performance. Among them, the GPR model achieved the highest prediction accuracy with coefficient of determination (R2) values of 0.964, 0.924, and 0.86 for oil, char, and gas yields respectively, during the testing stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ZhangChuwen发布了新的文献求助30
3秒前
聪明文涛完成签到 ,获得积分10
4秒前
哈哈发布了新的文献求助10
7秒前
852应助lgw采纳,获得10
7秒前
内向东蒽完成签到 ,获得积分10
8秒前
靓丽冬灵应助小思采纳,获得10
8秒前
8秒前
大月完成签到,获得积分10
9秒前
昀松完成签到,获得积分10
11秒前
huohua发布了新的文献求助10
12秒前
Tina完成签到 ,获得积分10
12秒前
14秒前
xiaomeng完成签到 ,获得积分10
15秒前
包容丹云完成签到,获得积分10
15秒前
木木完成签到,获得积分10
16秒前
无花果应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
柯一一应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
小兔子完成签到 ,获得积分10
18秒前
夜阑卧听发布了新的文献求助10
19秒前
22秒前
Aray完成签到 ,获得积分10
23秒前
24秒前
26秒前
phil发布了新的文献求助10
27秒前
寒冷的冬瓜完成签到,获得积分10
28秒前
今后应助ZORA采纳,获得10
29秒前
夜阑卧听完成签到,获得积分10
29秒前
29秒前
英俊的铭应助oo采纳,获得10
29秒前
乐观伟诚发布了新的文献求助10
29秒前
kirido发布了新的文献求助10
30秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924128
求助须知:如何正确求助?哪些是违规求助? 3468890
关于积分的说明 10954173
捐赠科研通 3198260
什么是DOI,文献DOI怎么找? 1767011
邀请新用户注册赠送积分活动 856635
科研通“疑难数据库(出版商)”最低求助积分说明 795541