医学
组内相关
迭代重建
四分位间距
图像质量
核医学
算法
放射科
人工智能
内科学
图像(数学)
数学
计算机科学
临床心理学
心理测量学
作者
Federica Catapano,Costanza Lisi,Giovanni Savini,Marzia Olivieri,Stefano Figliozzi,Alessandra Caracciolo,Lorenzo Monti,Marco Francone
标识
DOI:10.1097/rct.0000000000001537
摘要
Objective The increasing number of coronary computed tomography angiography (CCTA) requests raised concerns about dose exposure. New dose reduction strategies based on artificial intelligence have been proposed to overcome limitations of iterative reconstruction (IR) algorithms. Our prospective study sought to explore the added value of deep-learning image reconstruction (DLIR) in comparison with a hybrid IR algorithm (adaptive statistical iterative reconstruction-veo [ASiR-V]) in CCTA, even in clinical challenging scenarios, as obesity, heavily calcified vessels and coronary stents. Methods We prospectively included 103 consecutive patients who underwent CCTA. Data sets were reconstructed with ASiR-V and DLIR. For each reconstruction signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) was calculated, and qualitative assessment was made with a four-point Likert scale by two independent and blinded radiologists with different expertise. Results Both SNR and CNR were significantly higher in DLIR (SNR-DLIR median value [interquartile range] of 13.89 [11.06–16.35] and SNR-ASiR-V 25.42 [22.46–32.22], P < 0.001; CNR-DLIR 16.84 [9.83–27.08] vs CNR-ASiR-V 10.09 [5.69–13.5], P < 0.001). Median qualitative score was 4 for DLIR images versus 3 for ASiR-V ( P < 0.001), with a good interreader reliability [intraclass correlation coefficient(2,1)e intraclass correlation coefficient(3,1) 0.60 for DLIR and 0.62 and 0.73 for ASiR-V]. In the obese and in the “calcifications and stents” groups, DLIR showed significantly higher values of SNR (24.23 vs 11.11, P < 0.001 and 24.55 vs 14.09, P < 0.001, respectively) and CNR (16.08 vs 8.04, P = 0.008 and 17.31 vs 10.14, P = 0.003) and image quality. Conclusions Deep-learning image reconstruction in CCTA allows better SNR, CNR, and qualitative assessment than ASiR-V, with an added value in the most challenging clinical scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI