Effective Pan-Sharpening by Multiscale Invertible Neural Network and Heterogeneous Task Distilling

锐化 计算机科学 基本事实 人工智能 人工神经网络 编码器 特征(语言学) 计算机视觉 模式识别(心理学) 语言学 操作系统 哲学
作者
Man Zhou,Jie Huang,Xueyang Fu,Feng Zhao,Danfeng Hong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:33
标识
DOI:10.1109/tgrs.2022.3199210
摘要

As recognized, the ground truth multi-spectral (MS) images possess the complementary information (e.g., high-frequency component) of low-resolution (LR) MS images, which can be considered as privileged information to alleviate the spectral distortion and insufficient spatial texture enhancement. Since existing supervised pan-sharpening methods only utilize the ground truth MS image to supervise the network training, its potential value has not been fully explored. To accomplish this, we propose a heterogeneous knowledge-distilling pan-sharpening framework that distills pan-sharpening by imitating the ground truth reconstruction task in both the feature space and network output. In our work, the teacher network performs as a variational auto-encoder to extract effective features of the ground truth MS. The student network, acting as pan-sharpening, is trained by the assistance of the teacher network with the process-oriented feature imitation learning. Moreover, we design a customized information-lossless multi-scale invertible neural module to effectively fuse LR-MS and panchromatic (PAN) images, producing expected pan-sharpened results. To reduce the artifacts generated by the knowledge distillation process, a knowledge-driven refinement sub-network is further devised according to the pan-sharpening imaging model. Extensive experimental results on different satellite datasets validate that the proposed network outperforms the state-of-the-art methods both visually and quantitatively. The source code will be released at https://github.com/manman1995/pansharpening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助的速度采纳,获得10
刚刚
Tina_lai完成签到 ,获得积分10
1秒前
啦啦啦完成签到,获得积分10
2秒前
chenaio完成签到,获得积分10
3秒前
桐桐应助乐陶采纳,获得10
3秒前
6秒前
ZYX911007发布了新的文献求助10
6秒前
xiao完成签到,获得积分10
9秒前
9秒前
10秒前
太叔白风完成签到,获得积分10
10秒前
朴实流沙完成签到,获得积分20
11秒前
文静的峻熙完成签到,获得积分10
11秒前
Orange应助3D采纳,获得10
12秒前
12秒前
隐形黄蜂发布了新的文献求助10
12秒前
Lynn完成签到,获得积分10
13秒前
共享精神应助无私乐驹采纳,获得10
15秒前
16秒前
移动马桶发布了新的文献求助10
16秒前
旭xu关注了科研通微信公众号
17秒前
初见发布了新的文献求助10
17秒前
KonanoDade完成签到,获得积分10
18秒前
科研通AI5应助kyt0001采纳,获得10
19秒前
20秒前
20秒前
22秒前
123发布了新的文献求助10
22秒前
培a发布了新的文献求助10
23秒前
DODO完成签到,获得积分10
24秒前
卡卡西应助wmzskye采纳,获得10
25秒前
希望天下0贩的0应助meng采纳,获得10
27秒前
peng完成签到,获得积分10
27秒前
hzl发布了新的文献求助10
27秒前
27秒前
28秒前
旭xu发布了新的文献求助10
29秒前
123完成签到,获得积分10
30秒前
Zer完成签到,获得积分10
30秒前
loka完成签到,获得积分10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805315
求助须知:如何正确求助?哪些是违规求助? 3350274
关于积分的说明 10348210
捐赠科研通 3066165
什么是DOI,文献DOI怎么找? 1683589
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214