Effective Pan-Sharpening by Multiscale Invertible Neural Network and Heterogeneous Task Distilling

锐化 计算机科学 基本事实 人工智能 人工神经网络 编码器 特征(语言学) 计算机视觉 模式识别(心理学) 哲学 语言学 操作系统
作者
Man Zhou,Jie Huang,Xueyang Fu,Feng Zhao,Danfeng Hong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:33
标识
DOI:10.1109/tgrs.2022.3199210
摘要

As recognized, the ground truth multi-spectral (MS) images possess the complementary information (e.g., high-frequency component) of low-resolution (LR) MS images, which can be considered as privileged information to alleviate the spectral distortion and insufficient spatial texture enhancement. Since existing supervised pan-sharpening methods only utilize the ground truth MS image to supervise the network training, its potential value has not been fully explored. To accomplish this, we propose a heterogeneous knowledge-distilling pan-sharpening framework that distills pan-sharpening by imitating the ground truth reconstruction task in both the feature space and network output. In our work, the teacher network performs as a variational auto-encoder to extract effective features of the ground truth MS. The student network, acting as pan-sharpening, is trained by the assistance of the teacher network with the process-oriented feature imitation learning. Moreover, we design a customized information-lossless multi-scale invertible neural module to effectively fuse LR-MS and panchromatic (PAN) images, producing expected pan-sharpened results. To reduce the artifacts generated by the knowledge distillation process, a knowledge-driven refinement sub-network is further devised according to the pan-sharpening imaging model. Extensive experimental results on different satellite datasets validate that the proposed network outperforms the state-of-the-art methods both visually and quantitatively. The source code will be released at https://github.com/manman1995/pansharpening.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毅虹完成签到,获得积分10
2秒前
2秒前
3秒前
成长中发布了新的文献求助10
5秒前
6秒前
务实映之完成签到,获得积分10
6秒前
Daisy完成签到,获得积分10
7秒前
zicong完成签到,获得积分10
8秒前
asdfqwer发布了新的文献求助10
8秒前
大曼曼曼曼完成签到,获得积分10
10秒前
棋子一小枚完成签到,获得积分20
10秒前
jia完成签到,获得积分10
13秒前
Ava应助cherry采纳,获得10
14秒前
爆米花应助小栗采纳,获得10
14秒前
包容的小蚂蚁完成签到,获得积分10
15秒前
Criminology34应助tara采纳,获得10
15秒前
wzf完成签到 ,获得积分10
18秒前
李健应助努力的小韩采纳,获得10
23秒前
Sunshine应助根根采纳,获得20
24秒前
28秒前
延娜完成签到,获得积分10
30秒前
咖喱鸡完成签到,获得积分10
32秒前
TYM发布了新的文献求助10
32秒前
舒服的八宝粥完成签到 ,获得积分10
33秒前
好晒发布了新的文献求助10
33秒前
jia关注了科研通微信公众号
33秒前
感谢有你完成签到 ,获得积分10
35秒前
35秒前
35秒前
35秒前
35秒前
碧蓝笑槐完成签到,获得积分10
36秒前
36秒前
在水一方应助科研通管家采纳,获得10
36秒前
杨华启应助科研通管家采纳,获得10
36秒前
星辰大海应助科研通管家采纳,获得20
36秒前
Hello应助科研通管家采纳,获得10
36秒前
Lucas应助舒适的尔容采纳,获得10
37秒前
陈阳发布了新的文献求助20
43秒前
Findasheep完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869356
求助须知:如何正确求助?哪些是违规求助? 6451604
关于积分的说明 15660816
捐赠科研通 4985139
什么是DOI,文献DOI怎么找? 2688283
邀请新用户注册赠送积分活动 1630756
关于科研通互助平台的介绍 1588831