A sparse and spectral smooth regularized low-rank tensor decomposition method for hyperspectral target detection

高光谱成像 矩阵分解 正规化(语言学) 克罗内克三角洲 算法 张量(固有定义) 共轭梯度法 塔克分解 计算机科学 秩(图论) 张量分解 数学 模式识别(心理学) 人工智能 物理 特征向量 纯数学 组合数学 量子力学
作者
Chunhui Zhao,Mingxing Wang,Shou Feng
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:43 (12): 4608-4629
标识
DOI:10.1080/01431161.2022.2114110
摘要

In recent years, hyperspectral target detection methods have been widely used in military or civilian fields. Many high-performance hyperspectral target detection methods have been proposed, and tensor decomposition-based methods have attracted the attention of researchers. However, the non-uniqueness of tensor rank and the interference of noise will reduce the effect of target detection. In order to solve these problems, a sparse and spectral smooth regularized low-rank tensor decomposition method for hyperspectral target detection is proposed in this paper. The proposed method adds the low-rank regularization to the factor matrix of the tensor decomposition framework, which can reduce the adverse effect of information redundancy on the detection effect of the algorithm. Furthermore, the spectral smooth regularization is added to the spectral factor matrix to suppress noise and the sparse regularization is added to the core tensor to solve the problems of non-uniqueness of the Tucker tensor decomposition, which can improve the effect of target detection. On this basis, it simplifies the calculation process and reduces the complexity of the algorithm by using the conjugate gradient algorithm and the tensor Kronecker product. In this paper, the algorithm is tested on four real hyperspectral data sets and compared with six state-of-the-art algorithms. The experimental results show that targets detected by the proposed method are more obvious and the background is more pure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪要努力完成签到,获得积分10
刚刚
bkagyin应助玻璃弹珠采纳,获得10
1秒前
2秒前
科研通AI5应助不喝奶茶采纳,获得10
3秒前
3秒前
CodeCraft应助不喜采纳,获得10
3秒前
fbb发布了新的文献求助30
4秒前
niekyang完成签到 ,获得积分10
7秒前
认真盼曼完成签到,获得积分10
7秒前
watermelon完成签到,获得积分10
7秒前
坦率紫烟发布了新的文献求助10
8秒前
10秒前
玻璃弹珠完成签到,获得积分20
12秒前
小啾给小啾的求助进行了留言
12秒前
14秒前
天天快乐应助zhang采纳,获得10
14秒前
15秒前
苗轩完成签到,获得积分10
16秒前
繁木完成签到,获得积分10
16秒前
Chency完成签到,获得积分10
16秒前
科研通AI5应助赵大宝采纳,获得10
16秒前
认真盼曼发布了新的文献求助10
16秒前
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
灯与鬼应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
18秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
20秒前
20秒前
苗轩发布了新的文献求助10
21秒前
Cheney发布了新的文献求助10
21秒前
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798216
求助须知:如何正确求助?哪些是违规求助? 3343654
关于积分的说明 10317211
捐赠科研通 3060416
什么是DOI,文献DOI怎么找? 1679497
邀请新用户注册赠送积分活动 806655
科研通“疑难数据库(出版商)”最低求助积分说明 763282