Machine learning for bioelectronics on wearable and implantable devices: challenges and potential

生物电子学 过程(计算) 可穿戴计算机 领域(数学) 人工智能 工程类 计算机科学 可穿戴技术 系统工程 纳米技术 机器学习
作者
Guo Dong Goh,Jia Min Lee,Guo Liang Goh,Xi Huang,Samuel Lee,Wai Yee Yeong
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert, Inc.]
标识
DOI:10.1089/ten.tea.2022.0119
摘要

Bioelectronics presents a promising future in the field of embedded and implantable electronics, providing a range of functional applications, from personal health monitoring to bioactuators. However, due to the intrinsic difficulties present in producing and optimising bioelectronics, recent research has focused on utilising Machine Learning to reliably mitigate such issues and aid in process development. This review focuses on the recent developments of integrating Machine Learning into bioelectronics, aiding in a multitude of areas such as: material development, fabrication process optimisation and system integration. First, discussing how Machine Learning has aided in the materials development by identifying complex relationships between process input parameters and desired outputs, such as product design. Second, examine the advancements in Machine Learning to accurately optimise fabrication precision and stability for various 3D printing technologies. Third, provide an overview of how Machine Learning can greatly assist in the analysis of complex, non-linear relationships in data obtained from bioelectronics. Lastly, a summary of the challenges present with utilising Machine Learning with bioelectronics and any other developments in this field. Such advancements in the field of bioelectronics and Machine Learning could hopefully build a strong foundation for this research field, promoting smart optimisation together with effective use of Machine Learning to further enhance the effectiveness of such applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐林夕发布了新的文献求助10
刚刚
桐桐应助吴佳俊采纳,获得10
刚刚
小沫完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助30
4秒前
小猪发布了新的文献求助10
4秒前
4秒前
5秒前
在水一方应助小周采纳,获得10
5秒前
5秒前
利物浦996完成签到,获得积分10
5秒前
笑哈哈完成签到,获得积分10
6秒前
7秒前
qiuyang发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
大刘发布了新的文献求助10
8秒前
追寻梦想的风完成签到,获得积分10
9秒前
9秒前
小沫发布了新的文献求助10
9秒前
zhen发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
利物浦2024完成签到,获得积分10
12秒前
circet发布了新的文献求助10
12秒前
yzm发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
小蘑菇应助fantexi113采纳,获得10
15秒前
小周完成签到,获得积分20
15秒前
16秒前
16秒前
尼可刹米洛贝林完成签到,获得积分10
16秒前
zhang完成签到 ,获得积分10
17秒前
顾矜应助葳蕤采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3984230
求助须知:如何正确求助?哪些是违规求助? 3527557
关于积分的说明 11236972
捐赠科研通 3265829
什么是DOI,文献DOI怎么找? 1802852
邀请新用户注册赠送积分活动 880631
科研通“疑难数据库(出版商)”最低求助积分说明 808256