已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning for bioelectronics on wearable and implantable devices: challenges and potential

生物电子学 过程(计算) 可穿戴计算机 领域(数学) 人工智能 工程类 计算机科学 可穿戴技术 系统工程 纳米技术 机器学习
作者
Guo Dong Goh,Jia Min Lee,Guo Liang Goh,Xi Huang,Samuel Lee,Wai Yee Yeong
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert, Inc.]
标识
DOI:10.1089/ten.tea.2022.0119
摘要

Bioelectronics presents a promising future in the field of embedded and implantable electronics, providing a range of functional applications, from personal health monitoring to bioactuators. However, due to the intrinsic difficulties present in producing and optimising bioelectronics, recent research has focused on utilising Machine Learning to reliably mitigate such issues and aid in process development. This review focuses on the recent developments of integrating Machine Learning into bioelectronics, aiding in a multitude of areas such as: material development, fabrication process optimisation and system integration. First, discussing how Machine Learning has aided in the materials development by identifying complex relationships between process input parameters and desired outputs, such as product design. Second, examine the advancements in Machine Learning to accurately optimise fabrication precision and stability for various 3D printing technologies. Third, provide an overview of how Machine Learning can greatly assist in the analysis of complex, non-linear relationships in data obtained from bioelectronics. Lastly, a summary of the challenges present with utilising Machine Learning with bioelectronics and any other developments in this field. Such advancements in the field of bioelectronics and Machine Learning could hopefully build a strong foundation for this research field, promoting smart optimisation together with effective use of Machine Learning to further enhance the effectiveness of such applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助111采纳,获得10
2秒前
HH关闭了HH文献求助
3秒前
5秒前
上善若火完成签到 ,获得积分10
5秒前
zhangliangfu发布了新的文献求助10
8秒前
8秒前
谢朝邦完成签到 ,获得积分10
9秒前
12秒前
paulmichael完成签到,获得积分10
14秒前
顺利的寒云完成签到 ,获得积分10
15秒前
paulmichael发布了新的文献求助10
17秒前
橘子发布了新的文献求助10
18秒前
18秒前
zhaoM发布了新的文献求助10
20秒前
儒雅香彤完成签到 ,获得积分10
23秒前
24秒前
大模型应助fantastic采纳,获得10
24秒前
Lucas应助fantastic采纳,获得10
29秒前
田様应助快去吃蛋糕采纳,获得10
30秒前
可爱的函函应助zhaoM采纳,获得10
33秒前
33秒前
慈祥的冰淇淋完成签到,获得积分10
33秒前
852应助傢誠采纳,获得10
37秒前
俞若枫发布了新的文献求助50
39秒前
乔妙之完成签到 ,获得积分10
40秒前
42秒前
42秒前
43秒前
46秒前
云端完成签到,获得积分10
46秒前
平常心发布了新的文献求助10
47秒前
1461644768发布了新的文献求助10
48秒前
49秒前
wangfan75发布了新的文献求助10
50秒前
51秒前
傢誠发布了新的文献求助10
52秒前
55秒前
淡然宛凝发布了新的文献求助10
55秒前
59秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811489
求助须知:如何正确求助?哪些是违规求助? 3355849
关于积分的说明 10378027
捐赠科研通 3072700
什么是DOI,文献DOI怎么找? 1687672
邀请新用户注册赠送积分活动 811767
科研通“疑难数据库(出版商)”最低求助积分说明 766798