Organ-specific Biodosimetry Modeling Using Proteomic Biomarkers of Radiation Exposure

生物剂量学 医学 队列 医疗辐射 辐射暴露 核医学 病理 医学物理学 辐照 内科学 电离辐射 物理 核物理学
作者
Mary Sproull,Yu Fan,Qian Chen,Daoud Meerzaman,Kevin Camphausen
出处
期刊:Radiation Research [Radiation Research Society]
卷期号:202 (4)
标识
DOI:10.1667/rade-24-00092.1
摘要

In future mass casualty medical management scenarios involving radiation injury, medical diagnostics to both identify those who have been exposed and the level of exposure will be needed. As almost all exposures in the field are heterogeneous, determination of degree of exposure and which vital organs have been exposed will be essential for effective medical management. In the current study we sought to characterize novel proteomic biomarkers of radiation exposure and develop exposure and dose prediction algorithms for a variety of exposure paradigms to include uniform total-body exposures, and organ-specific partial-body exposures to only the brain, only the gut and only the lung. C57BL6 female mice received a single total-body irradiation (TBI) of 2, 4 or 8 Gy, 2 and 8 Gy for lung or gut exposures, and 2, 8 or 16 Gy for exposure to only the brain. Plasma was then screened using the SomaScan v4.1 assay for ∼7,000 protein analytes. A subset panel of protein biomarkers demonstrating significant (FDR<0.05 and |logFC|>0.2) changes in expression after radiation exposure was characterized. All proteins were used for feature selection to build 7 different predictive models of radiation exposure using different sample cohort combinations. These models were structured according to practical field considerations to differentiate level of exposure, in addition to identification of organ-specific exposures. Each model algorithm built using a unique sample cohort was validated with a training set of samples and tested with a separate new sample series. The overall predictive accuracy for all models was 100% at the model training level. When tested with reserved samples Model 1 which compared an "exposure" group inclusive of all TBI and organ-specific partial-body exposures in the study vs. control, and Model 2 which differentiated between control, TBI and partials (all organ-specific partial-body exposures) the resulting prediction accuracy was 92.3% and 95.4%, respectively. For identification of organ-specific exposures vs. control, Model 3 (only brain), Model 4 (only gut) and Model 5 (only lung) were developed with predictive accuracies of 78.3%, 88.9% and 94.4%, respectively. Finally, for Models 6 and 7, which differentiated between TBI and separate organ-specific partial-body cohorts, the testing predictive accuracy was 83.1% and 92.3%, respectively. These models represent novel predictive panels of radiation responsive proteomic biomarkers and illustrate the feasibility of development of biodosimetry algorithms with utility for simultaneous classification of total-body, partial-body and organ-specific radiation exposures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助Helium采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
残幻应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
嘿嘿哈嘿88完成签到,获得积分10
5秒前
6秒前
6秒前
CipherSage应助陈可欣采纳,获得10
7秒前
10秒前
莱贝特发布了新的文献求助10
10秒前
10秒前
打打应助CHB只争朝夕采纳,获得10
12秒前
cryjslong完成签到,获得积分10
12秒前
12秒前
赘婿应助留胡子的之云采纳,获得10
12秒前
堂风发布了新的文献求助30
12秒前
王子完成签到,获得积分10
16秒前
kyt完成签到,获得积分10
17秒前
exosome发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
19秒前
陈鹿华完成签到 ,获得积分10
21秒前
852应助Guoqiang采纳,获得10
21秒前
Helium发布了新的文献求助10
23秒前
wanci应助Ivy采纳,获得10
24秒前
ppp发布了新的文献求助10
24秒前
浮云发布了新的文献求助10
24秒前
24秒前
Akim应助Jun采纳,获得10
26秒前
27秒前
SciGPT应助迅速的八宝粥采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669