MedIM: Boost Medical Image Representation via Radiology Report-Guided Masking

遮罩(插图) 计算机科学 判别式 人工智能 分割 图像(数学) 模式识别(心理学) 代表(政治) 计算机视觉 艺术 政治 政治学 法学 视觉艺术
作者
Yutong Xie,Lin Gu,Tatsuya Harada,Jianpeng Zhang,Yong Xia,Qi Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 13-23 被引量:3
标识
DOI:10.1007/978-3-031-43907-0_2
摘要

Masked image modelling (MIM)-based pre-training shows promise in improving image representations with limited annotated data by randomly masking image patches and reconstructing them. However, random masking may not be suitable for medical images due to their unique pathology characteristics. This paper proposes Masked medical Image Modelling (MedIM), a novel approach, to our knowledge, the first research that masks and reconstructs discriminative areas guided by radiological reports, encouraging the network to explore the stronger semantic representations from medical images. We introduce two mutual comprehensive masking strategies, knowledge word-driven masking (KWM) and sentence-driven masking (SDM). KWM uses Medical Subject Headings (MeSH) words unique to radiology reports to identify discriminative cues mapped to MeSH words and guide the mask generation. SDM considers that reports usually have multiple sentences, each of which describes different findings, and therefore integrates sentence-level information to identify discriminative regions for mask generation. MedIM integrates both strategies by simultaneously restoring the images masked by KWM and SDM for a more robust and representative medical visual representation. Our extensive experiments on various downstream tasks covering multi-label/class image classification, medical image segmentation, and medical image-text analysis, demonstrate that MedIM with report-guided masking achieves competitive performance. Our method substantially outperforms ImageNet pre-training, MIM-based pre-training, and medical image-report pre-training counterparts. Codes are available at https://github.com/YtongXie/MedIM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
离魂完成签到,获得积分10
1秒前
鲁路修完成签到,获得积分10
2秒前
2秒前
372721759完成签到,获得积分10
2秒前
正直绿柳完成签到,获得积分10
2秒前
节能减排发布了新的文献求助10
2秒前
lxgz完成签到 ,获得积分10
3秒前
zxc完成签到,获得积分10
3秒前
dyzssg发布了新的文献求助20
7秒前
思源应助光亮念文采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助Gxx采纳,获得10
8秒前
8秒前
科研大捞完成签到,获得积分10
9秒前
9秒前
9秒前
共享精神应助神勇代荷采纳,获得30
10秒前
Fanag发布了新的文献求助10
11秒前
13秒前
科研大捞发布了新的文献求助10
13秒前
欣喜忻完成签到,获得积分10
14秒前
节能减排完成签到,获得积分10
15秒前
勤恳的农夫完成签到,获得积分10
17秒前
6666666666完成签到,获得积分10
18秒前
无花果应助猛犸象冲冲冲采纳,获得10
19秒前
huyz完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
21秒前
zhongwei2284完成签到,获得积分10
22秒前
Sewerant完成签到 ,获得积分10
23秒前
momo完成签到,获得积分10
23秒前
小白发布了新的文献求助10
23秒前
光亮念文完成签到,获得积分10
24秒前
25秒前
25秒前
领导范儿应助riverflowing采纳,获得10
26秒前
光亮念文发布了新的文献求助10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793321
求助须知:如何正确求助?哪些是违规求助? 3338017
关于积分的说明 10288476
捐赠科研通 3054654
什么是DOI,文献DOI怎么找? 1676108
邀请新用户注册赠送积分活动 804109
科研通“疑难数据库(出版商)”最低求助积分说明 761757