An Internet of Things and AI-Powered Framework for Long-Term Flood Risk Evaluation

计算机科学 深度学习 分割 人工智能 大洪水 基本事实 卷积神经网络 人工神经网络 卫星图像 图像分割 像素 遥感 机器学习 数据挖掘 哲学 神学 地质学
作者
Imran Ahmed,Misbah Ahmad,Gwanggil Jeon,Abdellah Chehri
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 3812-3819 被引量:9
标识
DOI:10.1109/jiot.2023.3308564
摘要

Integrating Internet of Things (IoT) and artificial intelligence (AI) techniques have found widespread application in various fields, including smart cities, agriculture, and environmental monitoring. With the increasing availability of satellite imagery and other remote sensing data, deep learning algorithms can be used and trained to detect, classify, and segment flood regions in real time. In addition, deep learning techniques, such as convolutional neural networks (CNNs), have been successful in this field, enabling the automated analysis of vast amounts of satellite imagery. By combining AI-based flood detection with other data sources, such as meteorological forecasts and ground-based sensors, comprehensive flood monitoring systems that provide early warning of flood events and facilitate effective emergency response can be developed. In this article, we developed an image-based flood segmentation system called DeepLab that uses a deep learning algorithm to detect and segment the presence and extent of floods with high accuracy and speed. The neural network was trained on an extensive collection of satellite images, which were complemented by ground truth labels that indicated the presence of flooded areas. The trained DeepLabv3 model is applied to new satellite images during inference to forecast the likelihood of each pixel belonging to a flooded area. To do this, a binary flood map was generated from the pixel-level forecasts by incorporating a threshold into the output probabilities. The proposed system's accuracy was high compared to the state-of-the-art methods, as evidenced by segmentation and experimental results. The segmentation accuracy achieved an overall score of 87%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
刚刚
null应助科研通管家采纳,获得10
刚刚
rabbit完成签到,获得积分20
刚刚
科研通AI5应助科研通管家采纳,获得30
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
子车茗应助科研通管家采纳,获得10
刚刚
Owen应助王阿仔采纳,获得10
1秒前
21完成签到,获得积分10
1秒前
2秒前
3秒前
清爽小珍完成签到,获得积分20
3秒前
wangteng完成签到,获得积分20
4秒前
SciGPT应助稳重傲柔采纳,获得10
5秒前
Science完成签到,获得积分20
5秒前
5秒前
www完成签到,获得积分10
6秒前
wangteng发布了新的文献求助10
8秒前
Founder发布了新的文献求助10
8秒前
Akim应助刘小小123采纳,获得10
9秒前
9秒前
科研通AI6应助七七采纳,获得30
9秒前
xiaojin完成签到,获得积分20
9秒前
十有五应助ff采纳,获得10
9秒前
9秒前
www发布了新的文献求助10
10秒前
11秒前
科目三应助伴夏采纳,获得30
13秒前
summerer发布了新的文献求助20
13秒前
xiaojin发布了新的文献求助10
14秒前
14秒前
Founder完成签到,获得积分10
14秒前
清爽小珍关注了科研通微信公众号
14秒前
FashionBoy应助双生客采纳,获得10
15秒前
15秒前
16秒前
希望天下0贩的0应助wangteng采纳,获得10
16秒前
17秒前
obito发布了新的文献求助10
17秒前
共享精神应助shi采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4496113
求助须知:如何正确求助?哪些是违规求助? 3948001
关于积分的说明 12241333
捐赠科研通 3605646
什么是DOI,文献DOI怎么找? 1983341
邀请新用户注册赠送积分活动 1019912
科研通“疑难数据库(出版商)”最低求助积分说明 912414