四元数
数学
域代数上的
基质(化学分析)
四元数代数
克罗内克产品
代数数
代数结构
算法
纯数学
代数表示
数学分析
几何学
材料科学
复合材料
克罗内克三角洲
物理
量子力学
细胞代数
作者
Dong Zhang,Tongsong Jiang,Gang Wang,В. И. Васильев
标识
DOI:10.1080/03081087.2022.2158167
摘要
Unlike quaternions and split quaternions, reduced biquaternions satisfy the multiplication commutative rule and are commonly used in image processing, fuzzy recognition, image compression, Hopfield neural networks, and digital signal processing. However, although algebraic techniques have been developed for the diagonalisation of quaternion and split quaternion matrices, the diagonalisation of a reduced biquaternion matrix is yet to be studied. In this study, we derive sufficient and necessary conditions for the diagonalisation of a reduced biquaternion matrix and devise two numerical methods for the diagonalisation of a reduced biquaternion matrix. These methods were derived using complex and real representations in the reduced biquaternionic algebra.
科研通智能强力驱动
Strongly Powered by AbleSci AI